Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(43): 50185-50195, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37851950

ABSTRACT

Propylene carbonate (PC) is a promising solvent for extending the operating temperature range for lithium-ion batteries (LIBs) because of its high dielectric constant and wide temperature range stability. However, PC can cause graphite exfoliation through cointercalation, leading to electrolyte decomposition and subsequent irreversible capacity loss. This work reports the formulation of a ternary electrolyte with the introduction of an inorganic salt additive, potassium hexafluorophosphate (KPF6), to address the aforementioned concerns. We demonstrate the cumulative effect of solvent and additive on delivering multiple performance benefits and safety of the battery. The faster diffusion rate of K + solvation shell decreases the rate of PC decomposition, thereby reducing its cointercalation. Additionally, the optimum concentration of KPF6, i.e., 0.1 M constructs a robust and insoluble LiF-rich electrode/electrolyte interphase, further suppressing graphite exfoliation and Li dendrite formation. The stable cyclability is achieved by enhanced Li + transportation through the LiF-rich interphase, enabling an exfoliation-free and dendrite-free graphite anode in the ternary electrolyte.

2.
ACS Appl Mater Interfaces ; 14(47): 52779-52793, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36382786

ABSTRACT

Lithium-ion batteries are the most ubiquitous energy storage devices in our everyday lives. However, their energy storage capacity fades over time due to chemical and structural changes in their components, via different degradation mechanisms. Understanding and mitigating these degradation mechanisms is key to reducing capacity fade, thereby enabling improvement in the performance and lifetime of Li-ion batteries, supporting the energy transition to renewables and electrification. In this endeavor, surface analysis techniques are commonly employed to characterize the chemistry and structure at reactive interfaces, where most changes are observed as batteries age. However, battery electrodes are complex systems containing unstable compounds, with large heterogeneities in material properties. Moreover, different degradation mechanisms can affect multiple material properties and occur simultaneously, meaning that a range of complementary techniques must be utilized to obtain a complete picture of electrode degradation. The combination of these issues and the lack of standard measurement protocols and guidelines for data interpretation can lead to a lack of trust in data. Herein, we discuss measurement challenges that affect several key surface analysis techniques being used for Li-ion battery degradation studies: focused ion beam scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and time-of-flight secondary ion mass spectrometry. We provide recommendations for each technique to improve reproducibility and reduce uncertainty in the analysis of NMC/graphite Li-ion battery electrodes. We also highlight some key measurement issues that should be addressed in future investigations.

3.
Sci Rep ; 8(1): 1386, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29362384

ABSTRACT

Silicon-Few Layer Graphene (Si-FLG) composite electrodes are investigated using a scalable electrode manufacturing method. A comprehensive study on the electrochemical performance and the impedance response is measured using electrochemical impedance spectroscopy. The study demonstrates that the incorporation of few-layer graphene (FLG) results in significant improvement in terms of cyclability, electrode resistance and diffusion properties. Additionally, the diffusion impedance responses that occur during the phase changes in silicon is elucidated through Staircase Potentio Electrochemical Impedance Spectroscopy (SPEIS): a more comprehensive and straightforward approach than previous state-of-charge based diffusion studies.

4.
Phys Chem Chem Phys ; 18(44): 30677-30685, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27790666

ABSTRACT

Hybrid anode materials consisting of micro-sized silicon (Si) particles interconnected with few-layer graphene (FLG) nanoplatelets and sodium-neutralized poly(acrylic acid) as a binder were evaluated for Li-ion batteries. The hybrid film has demonstrated a reversible discharge capacity of ∼1800 mA h g-1 with a capacity retention of 97% after 200 cycles. The superior electrochemical properties of the hybrid anodes are attributed to a durable, hierarchical conductive network formed between Si particles and the multi-scale carbon additives, with enhanced cohesion by the functional polymer binder. Furthermore, improved solid electrolyte interphase (SEI) stability is achieved from the electrolyte additives, due to the formation of a kinetically stable film on the surface of the Si.

SELECTION OF CITATIONS
SEARCH DETAIL
...