Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 268: 10-20, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24607322

ABSTRACT

The present study examined the effects of social status on adult neurogenesis in an extreme cooperative breeder: the naked mole rat. These animals live in large colonies of up to 300 individuals, with a strict reproductive dominance hierarchy; one female and one to three males breed, and all other members are socially subordinate and reproductively suppressed. We examined the effects of social and gonadal cues on doublecortin (DCX; a marker for immature neurons) immunoreactivity in the dentate gyrus (DG), piriform cortex (PCx) and basolateral amygdala (BLA) by comparing dominant breeding animals to non-breeding subordinates from intact colonies. We also examined DCX expression in subordinate animals that had been removed from their colony and paired with an opposite- or same-sex conspecific for 6months. Compared to subordinates, dominant breeders had significantly reduced DCX immunoreactivity in all brain areas, with BLA effects confined to females. By contrast, the effects of same- versus opposite-sex housing were region-specific. In the DG and PCx, more DCX immunoreactivity was observed for opposite- than same-sex-paired subordinates. Conversely, same-sex-paired females had more DCX immunoreactivity than opposite-sex-paired females in the BLA. Gonadectomy did not affect DCX expression in opposite-sex-paired animals, and no significant relationships between gonadal steroids and DCX immunoreactivity were detected, suggesting that group differences in neurogenesis are independent of gonadal hormones. The apparent lower neurogenic capacity displayed by breeders contrasts previous reports on neurogenesis and social rank, challenging the conventional view that subordination is stressful and impairs neurogenesis. Future work will clarify whether the present findings can be attributed to status-dependent differences in stress, behavioral plasticity, or life stage.


Subject(s)
Mole Rats/physiology , Neurogenesis/physiology , Sexual Behavior, Animal/physiology , Social Behavior , Social Dominance , Animals , Basolateral Nuclear Complex/physiology , Castration , Cell Count , Dentate Gyrus/physiology , Doublecortin Domain Proteins , Doublecortin Protein , Female , Hormones/blood , Housing, Animal , Linear Models , Male , Microtubule-Associated Proteins/metabolism , Neuropeptides/metabolism , Photomicrography , Piriform Cortex/physiology , Radioimmunoassay , Sex Characteristics
2.
Ecotoxicology ; 21(2): 304-14, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21947615

ABSTRACT

Environmental contamination by energetic compounds is an increasing international concern, although little is known of their accumulation in and affect on wildlife. Reptiles are often good models for contaminants studies due to natural history traits that increase their potential for exposure. We report a study to assess accumulation and effects of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX, High Melting Explosive) in green anoles (Anolis carolinensis). Acute oral toxicity (LD(50)) was estimated to exceed 2000 mg/kg body weight in adult male and female anoles using a standard up-and-down method. Accumulation of HMX was assessed in adult females via dietary exposure and into eggs by two routes (directly from the soil and via maternal transfer). HMX readily accumulated into adult females in a dose-dependent manner and into eggs following both exposure pathways. However, total HMX in soil-exposed eggs was up to 40-times greater than those exposed via maternal transfer. Although there was a suggestion of an HMX-induced reduction in body weight in adult females, overall there were no effects observed over the 12 week exposure period. The only significant effect on eggs was a 50% reduction in hatching success for eggs exposed to 2000 mg/kg HMX in the soil during incubation. Growth and survival of hatchlings was not affected by HMX exposure. Our results demonstrate that HMX accumulates through the food chain and into eggs from the soil, but likely poses minimal threat to lizards except to hatching success in eggs incubated in soils with HMX levels near maximum environmental concentrations.


Subject(s)
Azocines/toxicity , Explosive Agents/toxicity , Lizards/physiology , Soil Pollutants/toxicity , Animals , Azocines/pharmacokinetics , Clutch Size/drug effects , Embryo, Nonmammalian/drug effects , Explosive Agents/pharmacokinetics , Female , Lethal Dose 50 , Male , Maternal Exposure , Ovum/drug effects , Ovum/metabolism , Soil Pollutants/pharmacokinetics , Toxicity Tests
3.
Gen Comp Endocrinol ; 124(2): 226-35, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11703087

ABSTRACT

Sex steroids of presumably maternal origin have been found in avian, crocodilian, and chelonian egg yolks, and they can affect offspring morphology and behavior. The present study reports testosterone (T) levels to which embryos are potentially exposed in the green anole (Anolis carolinensis), a lizard with genotypic sex determination. We documented plasma and yolk T concentrations in adult females, in their developing follicles and eggs, and in freshly oviposited and incubating eggs. Plasma T was higher in reproductively active than in reproductively inactive females. Within reproductively active females, those with a single, large yolking follicle had higher plasma T than those that had one or more shelling, oviductal eggs. Individual females contributed different amounts of T to their yolks, but within females, more mature follicles or eggs consistently had higher yolk T concentrations than did less mature follicles or eggs. Similar to previous research, yolk T concentrations at oviposition were higher in male eggs than in female eggs. However, T levels during incubation did not differ by embryo sex, but rather increased in both male and female eggs. These results suggest that T plays a role in the reproductive physiology of females and potentially in the phenotypic development of their offspring. Furthermore, whereas the yolk T increase observed during follicular maturation is clearly a maternal influence, it remains unclear whether that observed during egg development (i.e., postfertilization) results from a lack of T uptake by the embryo as yolk is absorbed, from embryonic production of T that diffuses into the yolk, or from some combination of these processes. Because lizard embryos are comparatively well developed at oviposition, the assumption that yolk steroids are strictly of maternal origin may require modification, and the possibility that embryos are modulating their own steroid environment needs to be explored.


Subject(s)
Egg Yolk/metabolism , Lizards/metabolism , Testosterone/metabolism , Zygote/metabolism , Animals , Female , Lizards/blood , Male , Random Allocation , Statistics, Nonparametric , Testosterone/blood
4.
Horm Behav ; 39(2): 131-43, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11243741

ABSTRACT

This study addressed the role of testosterone (T) in the development of sexually dimorphic behavior in the green anole lizard, Anolis carolinensis. We documented the pattern of endogenous T concentrations during ontogeny and we determined the behavioral effects of experimentally elevated T in juvenile males and females. T concentrations were measured in the plasma of hatchlings from eggs incubated in the laboratory, in juveniles of all sizes sampled in the field, and in the yolks of freshly laid eggs in the laboratory and were compared to plasma T in adult females (measured in this study) and adult males. There were no sex differences in plasma T in hatchling and small juvenile (<26-mm snout-vent length, SVL; <14 days old) males and females, concentrations of which in both sexes tended to decline over the 14-day posthatching period. Plasma T sharply increased in juvenile males, but not females, after approximately 14 days posthatching (>25-mm SVL), and it became significantly higher after approximately 38 days posthatching (>30-mm SVL). Plasma T for juvenile males was within the range detected in breeding adult females, but it was 20- to 45-fold lower than that of adult males, breeding or postbreeding. All eggs contained detectable yolk T, but eggs that gave rise to males contained nearly twice as much yolk T as those that gave rise to females. We do not know whether this yolk T comes from the mother, embryo, or both. In behavior trials conducted in the laboratory, juveniles (36- to 42-mm SVL) with T implants, regardless of whether they were male or female, had increased activity levels compared to juveniles with blank implants, due to increased rates of nearly every behavior monitored. These results are discussed in the context of the organization-activation theory of sexual differentiation and the particular life history of A. carolinensis.


Subject(s)
Aging/psychology , Behavior, Animal/drug effects , Lizards/physiology , Testosterone/pharmacology , Animals , Drug Implants , Female , Male , Ovum/metabolism , Sex Characteristics , Testosterone/administration & dosage , Testosterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...