Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Pharmacol Ther ; 86(4): 387-95, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19626001

ABSTRACT

The American College of Rheumatology (ACR) 20% preliminary definition of improvement in rheumatoid arthritis (RA) (ACR20) is widely used in clinical trials to assess response to treatment. The objectives of this analysis were to develop an exposure-response model of ACR20 in subjects receiving treatment with certolizumab pegol and to predict clinical outcomes following various treatment schedules. At each visit, subjects were classified as being ACR20 responders or ACR20 nonresponders or as having dropped out. A Markov mixed-effects model was developed to investigate the effects of the drug on the transitions between the three defined states. Increasing certolizumab pegol exposure predicted an increasing probability of becoming a responder and remaining a responder, as well as a reduced probability of dropping out of treatment. Data from simulations of the ACR20 response rate support the use of dosing regimens of 400 mg at weeks 0, 2, and 4 followed by 200 mg every 2 weeks, or an alternative maintenance regimen of 400 mg every 4 weeks.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Immunoglobulin Fab Fragments/therapeutic use , Polyethylene Glycols/therapeutic use , Adolescent , Adult , Age Factors , Aged, 80 and over , Antibodies, Monoclonal, Humanized , Certolizumab Pegol , Female , Health Status Indicators , Humans , Male , Markov Chains , Middle Aged , Patient Dropouts , Randomized Controlled Trials as Topic , Sex Factors , Young Adult
2.
Crit Rev Toxicol ; 31(3): 285-311, 2001 May.
Article in English | MEDLINE | ID: mdl-11405442

ABSTRACT

Benzene is a ubiquitous, highly flammable, colorless liquid that is a known hematotoxin, myelotoxin, and human leukemogen. Benzene-induced toxicity in animals is clearly mediated by its metabolism. The mechanisms of acute hemato- and myelotoxicity in humans are almost certainly the same as in animals, and there is compelling evidence that metabolism is requisite for the induction of leukemia in humans. A very large number of experimental investigations of benzene metabolism have been conducted with animals, both in vivo and in vitro. There have also been many investigations of benzene metabolism in humans and with human tissues, Although the blood or tissue concentrations of benzene metabolites in humans resulting from benzene exposure have never been measured. Further, a number of mathematical models of benzene metabolism and dosimetry have been developed. In this article, we consider results from both experimental and mathematical modeling research, with particular emphasis on the last decade, and discuss the factors that are likely to be most influential in the metabolism of benzene.


Subject(s)
Benzene/metabolism , Animals , Benzene/administration & dosage , Benzene/pharmacokinetics , Enzyme Induction/drug effects , Female , Humans , In Vitro Techniques , Male , Microsomes/metabolism , Models, Theoretical
3.
Carcinogenesis ; 20(8): 1511-20, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10426800

ABSTRACT

Benzene, a ubiquitous environmental pollutant, is known to cause leukemia and aplastic anemia in humans and hematotoxicity and myelotoxicity in rodents. Toxicity is thought to be exerted through oxidative metabolites formed in the liver, primarily via pathways mediated by cytochrome P450 2E1 (CYP2E1). Phenol, hydroquinone and trans-trans-muconaldehyde have all been hypothesized to be involved in benzene-induced toxicity. Recent reports indicate that benzene oxide is produced in vitro and in vivo and may be sufficiently stable to reach the bone marrow. Our goal was to improve existing mathematical models of microsomal benzene metabolism by including time course data for benzene oxide, by obtaining better parameter estimates and by determining if enzymes other than CYP2E1 are involved. Microsomes from male B6C3F1 mice and F344 rats were incubated with [(14)C]benzene (14 microM), [(14)C]phenol (303 microM) and [(14)C]hydroquinone (8 microM). Benzene and phenol were also incubated with mouse microsomes in the presence of trans-dichloroethylene, a CYP2E1 inhibitor, and benzene was incubated with trichloropropene oxide, an epoxide hydrolase inhibitor. These experiments did not indicate significant contributions of enzymes other than CYP2E1. Mathematical model parameters were fitted to rodent data and the model was validated by predicting human data. Model simulations predicted the qualitative behavior of three human time course data sets and explained up to 81% of the total variation in data from incubations of benzene for 16 min with microsomes from nine human individuals. While model predictions did deviate systematically from the data for benzene oxide and trihydroxybenzene, overall model performance in predicting the human data was good. The model should be useful in quantifying human risk due to benzene exposure and explicitly accounts for interindividual variation in CYP2E1 activity.


Subject(s)
Benzene/metabolism , Carcinogens/metabolism , Cytochrome P-450 CYP2E1/metabolism , Microsomes, Liver/metabolism , Models, Biological , Animals , Cytochrome P-450 CYP2E1 Inhibitors , Enzyme Inhibitors/pharmacology , Humans , Male , Mice , Microsomes, Liver/drug effects , Quaternary Ammonium Compounds/pharmacology , Rats , Rats, Inbred F344 , Trichloroepoxypropane/pharmacology
4.
Carcinogenesis ; 18(9): 1695-700, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9328163

ABSTRACT

Benzene is a ubiquitous environmental pollutant that is known to cause hematotoxicity and leukemia in humans. The initial oxidative metabolite of benzene has long been suspected to be benzene oxide (3,5-cyclohexadiene-1,2-oxide). During in vitro experiments designed to characterize the oxidative metabolism of [14C]benzene, a metabolite was detected by HPLC-radioactivity analysis that did not elute with other known oxidative metabolites. The purpose of our investigation was to prove the hypothesis that this metabolite was benzene oxide. Benzene (1 mM) was incubated with liver microsomes from human donors, male B6C3F1 mice, or male Fischer-344 rats, NADH (1 mM), and NADPH (1 mM) in 0.1 M sodium phosphate buffer (pH 7.4) and then extracted with methylene chloride. Gas chromatography-mass spectrometry analysis of incubation extracts for mice, rats, and humans detected a metabolite whose elution time and mass spectrum matched that of synthetic benzene oxide. The elution time of the benzene oxide peak was approximately 4.1 min, while phenol eluted at approximately 8 min. Benzene oxide also coeluted with the HPLC peak of the previously unidentified metabolite. Based on the 14C activity of this peak, the concentration of benzene oxide was determined to be approximately 18 microM, or 7% of total benzene metabolites, after 18 min of incubation of mouse microsomes with 1 mM benzene. The metabolite was not observed in incubations using heat-inactivated microsomes. This is the first demonstration that benzene oxide is a product of hepatic benzene metabolism in vitro. The level of benzene oxide detected suggests that benzene oxide is sufficiently stable to reach significant levels in the blood of mice, rats, and humans and may be translocated to the bone marrow. Therefore benzene oxide should not be excluded as a possible metabolite involved in benzene-induced leukemogenesis.


Subject(s)
Benzene/metabolism , Cyclohexanes/metabolism , Microsomes, Liver/metabolism , Animals , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Humans , Male , Mice , Rats , Rats, Inbred F344 , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...