Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 724: 138253, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32247122

ABSTRACT

In 2010, the UK government established the Demonstration Test Catchment (DTC) initiative to evaluate the extent to which on-farm mitigation measures can cost-effectively reduce the impacts of agricultural water pollution on river ecology whilst maintaining food production capacity. A central component of the DTC platform was the establishment of a comprehensive network of automated, web-based sensor technologies to generate high-temporal resolution (30 min) empirical datasets of surface water, groundwater and meteorological parameters over a long period (2011-2018). Utilising 8.9 million water quality measurements generated for the River Wensum, this paper demonstrates how long-term, high-resolution monitoring of hydrochemistry can improve our understanding of the complex temporal dynamics of riverine processes from 30 min to annual timescales. This paper explores the impact of groundwater-surface water interactions on instream pollutant concentrations (principally nitrogen, phosphorus and turbidity) and reveals how varying hydrochemical associations under contrasting flow regimes can elicit important information on the dominant pollution pathways. Furthermore, this paper examines the relationships between agricultural pollutants and precipitation events of varying magnitude, whilst demonstrating how high-resolution data can be utilised to develop conceptual models of hydrochemical processes for contrasting winter and summer seasons. Finally, this paper considers how high-resolution hydrochemical data can be used to increase land manager awareness of environmentally damaging farming operations and encourage the adoption of more water sensitive land management practices.

2.
J Environ Manage ; 181: 874-882, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27397841

ABSTRACT

Agricultural point source pesticide pollution arising from contaminated machinery washings and accidental spillages pose a significant threat to river water and groundwater quality. In this study, we assess the effectiveness of a three-stage on-farm biobed for treating pesticide contaminated wastewater from a large (20 km(2)) commercial arable estate. The facility consisted of an enclosed machinery wash-down unit (stage 1), a 49 m(2) lined compost-straw-topsoil biobed (stage 2), and a 200 m(2) drainage field with a trickle irrigation system (stage 3). Pesticide concentrations were analysed in water samples collected fortnightly between November 2013 and November 2015 from the biobed input and output sumps and from 20 porous pots buried at 45 cm and 90 cm depth within the drainage field. The results revealed that the biobed removed 68-98% of individual pesticides within the contaminated washings, with mean total pesticide concentrations reducing by 91.6% between the biobed input and output sumps. Drainage field irrigation removed a further 68-99% of individual pesticides, with total mean pesticide concentrations reducing by 98.4% and 97.2% in the 45 cm and 90 cm depth porous pots, respectively. The average total pesticide concentration at 45 cm depth in the drainage field (57 µg L(-1)) was 760 times lower than the mean concentration recorded in the input sump (43,334 µg L(-1)). There was no evidence of seasonality in the efficiency of biobed pesticide removal, nor was there evidence of a decline in removal efficiency over the two-year monitoring period. However, higher mean total pesticide concentrations at 90 cm (102 µg L(-1)) relative to 45 cm (57 µg L(-1)) depth indicated an accumulation of pesticide residues deeper within the soil profile. Overall, the results presented here demonstrate that a three-stage biobed can successfully reduce pesticide pollution risk from contaminated machinery washings on a commercial farm.


Subject(s)
Farms , Pesticides , Waste Disposal, Fluid/methods , Water Pollutants, Chemical , Agricultural Irrigation/instrumentation , Agricultural Irrigation/methods , Agriculture/methods , Equipment Design , Pesticide Residues/analysis , Pesticide Residues/isolation & purification , Pesticides/analysis , Pesticides/isolation & purification , Soil , United Kingdom , Waste Disposal, Fluid/instrumentation , Wastewater/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 545-546: 184-99, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26747982

ABSTRACT

This paper examines relationships between rainfall-runoff, catchment connectivity, antecedent moisture conditions and fertiliser application with nitrate-N and total phosphorus (TP) fluxes in an arable headwater catchment over three hydrological years (2012-2014). Annual precipitation totals did not vary substantially between years, yet the timing of rainfall strongly influenced runoff generation and subsequent nitrate-N and TP fluxes. The greatest nitrate-N (>250 kg N day(-1)) and TP (>10 kg TP day(-1)) fluxes only occurred when shallow groundwater was within 0.6m of the ground surface and runoff coefficients were greater than 0.1. These thresholds were reached less frequently in 2012 due to drought recovery resulting in lower annual nitrate-N (7.4 kg N ha(-1)) and TP (0.12 kg P ha(-1)) fluxes in comparison with 2013 (15.1 kg N ha(-1); 0.21 kg P ha(-1)). The wet winter of 2013 with elevated shallow groundwater levels led to more frequent activation of sub-surface pathways and tile drain flow. Throughout the period, dry antecedent conditions had a temporary effect in elevating TP loads. Evidence of TP source exhaustion after consecutive storm events can be attributed to the repeated depletion of temporarily connected critical source areas to the river network via impermeable road surfaces. Fertiliser application varied considerably across three years due to differences in crop rotation between farms, with annual N and P fertiliser inputs varying by up to 21% and 41%, respectively. Proportional reductions in annual riverine nitrate-N and TP loadings were not observed at the sub-catchment outlet as loadings were largely influenced by annual runoff. Nitrate loadings were slightly higher during fertiliser application, but there was little relationship between P fertiliser application and riverine TP load. These data indicate that this intensive arable catchment may be in a state of biogeochemical stationarity, whereby legacy stores of nutrients buffer against changes in contemporary nutrient inputs.

4.
Environ Int ; 77: 106-15, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25668571

ABSTRACT

This research examined the effect of regular flooding upon PCDD/F and PCB levels in milk, beef and lamb, produced on the floodplains of industrial river catchments. Our unique dataset included more than 200 samples analysed for PCDD/Fs and PCBs over two data collection phases (1998-1999 & 2008-2010) from working farms. A robust paired study design was adopted with samples taken from flood-prone farms and nearby control farms not subject to flooding. On industrial river catchments regular flooding is associated with higher PCDD/F and PCB levels in soils and grass. This contamination may be transferred to food but the impact varied by food type. These contrasts may be due to physiological differences between animals, the ages at which they are sent to market and differences in animal husbandry. To minimise the risks of producing food on flood-prone land in industrial river catchments, as well as on any land with elevated PCDD/F and PCB levels, this research suggests a number of options. The choice of livestock may be important and as an example in our study beef cattle accumulated PCDD/Fs to a higher degree than sheep. Land management may also play a role and could include minimising the time that livestock spend on such land or feeding commercial feed, low in PCDD/Fs and PCBs, where appropriate.


Subject(s)
Dioxins/analysis , Floods , Food Contamination/analysis , Meat/analysis , Milk/chemistry , Polychlorinated Biphenyls/analysis , Soil Pollutants/analysis , Animals , Cattle , Food Contamination/statistics & numerical data , Poaceae/chemistry , Polychlorinated Dibenzodioxins/analysis , Rivers , Sheep , Soil/chemistry , United Kingdom
6.
Science ; 341(6141): 45-50, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23828934

ABSTRACT

Landscapes generate a wide range of valuable ecosystem services, yet land-use decisions often ignore the value of these services. Using the example of the United Kingdom, we show the significance of land-use change not only for agricultural production but also for emissions and sequestration of greenhouse gases, open-access recreational visits, urban green space, and wild-species diversity. We use spatially explicit models in conjunction with valuation methods to estimate comparable economic values for these services, taking account of climate change impacts. We show that, although decisions that focus solely on agriculture reduce overall ecosystem service values, highly significant value increases can be obtained from targeted planning by incorporating all potential services and their values and that this approach also conserves wild-species diversity.


Subject(s)
Agriculture , Climate Change , Conservation of Natural Resources , Decision Support Techniques , Ecosystem , Models, Economic , Animals , Biodiversity , Decision Making , Marketing , United Kingdom
8.
Environ Sci Technol ; 39(23): 9033-8, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16382922

ABSTRACT

This paper presents the results of a study examining whether the flooding of pasture by rivers gives rise to higher PCDD/F and PCB concentrations in cows' milk. Over 180 milk, soil, and grass samples, taken from 38 farms across 3 different river systems (River Dee, Trent, and Doe Lea/Rother/Don) in the United Kingdom, were analyzed for PCDD/Fs and PCBs. The concentrations were compared between flood-prone farms, where the animals had access to pasture that is often flooded, and control farms where the land does not flood. The results indicated that concentrations of PCDD/Fs and PCBs in cows' milk were higher in samples taken from farms prone to flooding, but only from the river systems flowing through industrial and urban areas. Raised levels of PCDD/F and PCBs were also found in soil and grass from farms prone to flooding providing strong corroborative evidence that the higher concentrations in cows' milk from such areas is likely to be due to the ingestion of contaminated grass and soil. Overall, the results provide strong evidence that flooding of pastureland can indeed result in elevated concentrations of PCDD/Fs and PCBs in milk from the farms so affected.


Subject(s)
Benzofurans/analysis , Disasters , Milk/chemistry , Poaceae/chemistry , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analogs & derivatives , Polymers/analysis , Soil Pollutants/analysis , Animals , Cattle , Fresh Water , Multivariate Analysis , Polychlorinated Dibenzodioxins/analysis
9.
J Environ Manage ; 68(3): 315-28, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12837260

ABSTRACT

The 1991 EU Nitrate Directive was designed to reduce water pollution from agriculturally derived nitrates. England and Wales implemented this Directive by controlling agricultural activities within their most vulnerable areas termed Nitrate Vulnerable Zones. These were designated by identifying drinking water catchments (surface and groundwater), at risk from nitrate pollution. However, this method contravened the Nitrate Directive because it only protected drinking water and not all waters. In this paper, a GIS was used to identify all areas of groundwater vulnerable to nitrate pollution. This was achieved by constructing a model containing data on four characteristics: the quality of the water leaving the root zone of a piece of land; soil information; presence of low permeability superficial (drift) material; and aquifer properties. These were combined in a GIS and the various combinations converted into a measure of vulnerability using expert knowledge. Several model variants were produced using different estimates of the quality of the water leaving the root zone and contrasting methods of weighting the input data. When the final models were assessed all produced similar spatial patterns and, when verified by comparison with trend data derived from monitored nitrate concentrations, all the models were statistically significant predictors of groundwater nitrate concentrations. The best predictive model contained a model of nitrate leaching but no land use information, implying that changes in land use will not affect designations based upon this model. The relationship between nitrate levels and borehole intake depths was investigated since there was concern that the observed contrasts in nitrate levels between vulnerability categories might be reflecting differences in borehole intake depths and not actual vulnerability. However, this was not found to be statistically important. Our preferred model provides the basis for developing a new set of groundwater Nitrate Vulnerable Zones that should help England and Wales to comply with the EU Nitrate Directive.


Subject(s)
Geographic Information Systems , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Water Supply/analysis , Agriculture , England , Fertilizers/analysis , Geologic Sediments/analysis , Maps as Topic , Models, Theoretical , Nitrates/analysis , Reproducibility of Results , Risk Assessment , Wales
SELECTION OF CITATIONS
SEARCH DETAIL
...