Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Eur J Immunol ; 54(6): e2350548, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634287

ABSTRACT

Transforming growth factor beta (TGF-ß) signaling is essential for a balanced immune response by mediating the development and function of regulatory T cells (Tregs) and suppressing autoreactive T cells. Disruption of this balance can result in autoimmune diseases, including multiple sclerosis (MS). MicroRNAs (miRNAs) targeting TGF-ß signaling have been shown to be upregulated in naïve CD4 T cells in MS patients, resulting in a limited in vitro generation of human Tregs. Utilizing the murine model experimental autoimmune encephalomyelitis, we show that perinatal administration of miRNAs, which target the TGF-ß signaling pathway, enhanced susceptibility to central nervous system (CNS) autoimmunity. Neonatal mice administered with these miRNAs further exhibited reduced Treg frequencies with a loss in T cell receptor repertoire diversity following the induction of experimental autoimmune encephalomyelitis in adulthood. Exacerbated CNS autoimmunity as a result of miRNA overexpression in CD4 T cells was accompanied by enhanced Th1 and Th17 cell frequencies. These findings demonstrate that increased levels of TGF-ß-associated miRNAs impede the development of a diverse Treg population, leading to enhanced effector cell activity, and contributing to an increased susceptibility to CNS autoimmunity. Thus, TGF-ß-targeting miRNAs could be a risk factor for MS, and recovering optimal TGF-ß signaling may restore immune homeostasis in MS patients.


Subject(s)
Autoimmunity , Central Nervous System , Encephalomyelitis, Autoimmune, Experimental , MicroRNAs , Multiple Sclerosis , Signal Transduction , T-Lymphocytes, Regulatory , Th17 Cells , Transforming Growth Factor beta , MicroRNAs/genetics , MicroRNAs/immunology , Animals , T-Lymphocytes, Regulatory/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Transforming Growth Factor beta/metabolism , Mice , Signal Transduction/immunology , Autoimmunity/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/genetics , Humans , Central Nervous System/immunology , Th17 Cells/immunology , Mice, Inbred C57BL , Th1 Cells/immunology , Cell Differentiation/immunology , Female
2.
J Neuroimmunol ; 387: 578282, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38183947

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease characterized by infiltration of autoreactive T cells into the central nervous system (CNS). In order to understand how activated, autoreactive T cells are able to cross the blood brain barrier, the unique molecular characteristics of pathogenic T cells need to be more thoroughly examined. In previous work, our laboratory found autotaxin (ATX) to be upregulated by activated autoreactive T cells in the mouse model of MS. ATX is a secreted glycoprotein that promotes T cell chemokinesis and transmigration through catalysis of lysophoshphatidic acid (LPA). ATX is elevated in the serum of MS patients during active disease phases, and we previously found that inhibiting ATX decreases severity of neurological deficits in the mouse model. In this study, ATX expression was found to be lower in MS patient immune cells during rest, but significantly increased during early activation in a manner not seen in healthy controls. The ribosomal binding protein HuR, which stabilizes ATX mRNA, was also increased in MS patients in a similar pattern to that of ATX, suggesting it may be helping regulate ATX levels after activation. The proinflammatory cytokine interleukin-23 (IL-23) was shown to induce prolonged ATX expression in MS patient Th1 and Th17 cells. Finally, through ChIP, re-ChIP analysis, we show that IL-23 may be signaling through pSTAT3/pSTAT4 heterodimers to induce expression of ATX. Taken together, these findings elucidate cell types that may be contributing to elevated serum ATX levels in MS patients and identify potential drivers of sustained expression in encephalitogenic T cells.


Subject(s)
Multiple Sclerosis , Animals , Mice , Humans , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Central Nervous System/metabolism , Disease Models, Animal , Cytokines , Interleukin-23 , Lysophospholipids/genetics , Lysophospholipids/pharmacology
3.
Eur J Immunol ; 54(1): e2350561, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37850588

ABSTRACT

Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the CNS. A defining characteristic of MS is the ability of autoreactive T lymphocytes to cross the blood-brain barrier and mediate inflammation within the CNS. Previous work from our lab found the gene Enpp2 to be highly upregulated in murine encephalitogenic T cells. Enpp2 encodes for the protein autotaxin, a secreted glycoprotein that catalyzes the production of lysophosphatidic acid and promotes transendothelial migration of T cells from the bloodstream into the lymphatic system. The present study sought to characterize autotaxin expression in T cells during CNS autoimmune disease and determine its potential therapeutic value. Myelin-activated CD4 T cells upregulated expression of autotaxin in vitro, and ex vivo analysis of CNS-infiltrating CD4 T cells showed significantly higher autotaxin expression compared with cells from healthy mice. In addition, inhibiting autotaxin in myelin-specific T cells reduced their encephalitogenicity in adoptive transfer studies and decreased in vitro cell motility. Importantly, using two mouse models of MS, treatment with an autotaxin inhibitor ameliorated EAE severity, decreased the number of CNS infiltrating T and B cells, and suppressed relapses, suggesting autotaxin may be a promising therapeutic target in the treatment of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Mice , Blood-Brain Barrier , CD4-Positive T-Lymphocytes , Central Nervous System , Mice, Inbred C57BL , Multiple Sclerosis/therapy , Multiple Sclerosis/metabolism
4.
Article in English | MEDLINE | ID: mdl-36270950

ABSTRACT

A woman presented at age 18 years with partial myelitis and diplopia and experienced multiple subsequent relapses. Her MRI demonstrated T2 abnormalities characteristic of multiple sclerosis (MS) (white matter ovoid lesions and Dawson fingers), and CSF demonstrated an elevated IgG index and oligoclonal bands restricted to the CSF. Diagnosed with clinically definite relapsing-remitting MS, she was treated with various MS disease-modifying therapies and eventually began experiencing secondary progression. At age 57 years, she developed an acute longitudinally extensive transverse myelitis and was found to have AQP4 antibodies by cell-based assay. Our analysis of the clinical course, radiographic findings, molecular diagnostic methods, and treatment response characteristics support the hypothesis that our patient most likely had 2 CNS inflammatory disorders: MS, which manifested as a teenager, and neuromyelitis optica spectrum disorder, which evolved in her sixth decade of life. This case emphasizes a key principle in neurology practice, which is to reconsider whether the original working diagnosis remains tenable, especially when confronted with evidence (clinical and/or paraclinical) that raises the possibility of a distinctively different disorder.


Subject(s)
Multiple Sclerosis , Myelitis, Transverse , Neuromyelitis Optica , Humans , Adolescent , Female , Middle Aged , Aquaporin 4 , Multiple Sclerosis/diagnosis , Multiple Sclerosis/complications , Oligoclonal Bands , Myelitis, Transverse/diagnosis , Myelitis, Transverse/complications , Immunoglobulin G
6.
Nat Commun ; 13(1): 5606, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153324

ABSTRACT

Decreased adipose tissue regulatory T cells contribute to insulin resistance in obese mice, however, little is known about the mechanisms regulating adipose tissue regulatory T cells numbers in humans. Here we obtain adipose tissue from obese and lean volunteers. Regulatory T cell abundance is lower in obese vs. lean visceral and subcutaneous adipose tissue and associates with reduced insulin sensitivity and altered adipocyte metabolic gene expression. Regulatory T cells numbers decline following high-fat diet induction in lean volunteers. We see alteration in major histocompatibility complex II pathway in adipocytes from obese patients and after high fat ingestion, which increases T helper 1 cell numbers and decreases regulatory T cell differentiation. We also observe increased expression of inhibitory co-receptors including programmed cell death protein 1 and OX40 in visceral adipose tissue regulatory T cells from patients with obesity. In human obesity, these global effects of interferon gamma to reduce regulatory T cells and diminish their function appear to instigate adipose inflammation and suppress adipocyte metabolism, leading to insulin resistance.


Subject(s)
Insulin Resistance , Adipose Tissue/metabolism , Animals , Humans , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory/metabolism
7.
Front Neurol ; 13: 796933, 2022.
Article in English | MEDLINE | ID: mdl-35651353

ABSTRACT

Vitamin D insufficiency during childhood has been linked to the development of multiple sclerosis (MS), typically an adult-onset inflammatory demyelinating disease of the central nervous system (CNS). Since vitamin D was known to have immunoregulatory properties on both innate and adaptive immunity, it was hypothesized that low vitamin D resulted in aberrant immune responses and the development of MS. However, vitamin D receptors are present on many cell types, including neurons, oligodendrocytes, astrocytes and microglia, and vitamin D has profound effects on development and function of the CNS. This leads to the possibility that low vitamin D may alter the CNS in a manner that makes it vulnerable to inflammation and the development of MS. This review analysis the role of vitamin D in the immune and nervous system, and how vitamin D insufficiency in children may contribute to the development of MS.

8.
EBioMedicine ; 76: 103798, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35094961

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) has a complex genetic, immune and metabolic pathophysiology. Recent studies implicated the gut microbiome in MS pathogenesis. However, interactions between the microbiome and host immune system, metabolism and diet have not been studied over time in this disorder. METHODS: We performed a six-month longitudinal multi-omics study of 49 participants (24 untreated relapse remitting MS patients and 25 age, sex, race matched healthy control individuals. Gut microbiome composition and function were characterized using 16S and metagenomic shotgun sequencing. Flow cytometry was used to characterize blood immune cell populations and cytokine profiles. Circulating metabolites were profiled by untargeted UPLC-MS. A four-day food diary was recorded to capture the habitual dietary pattern of study participants. FINDINGS: Together with changes in blood immune cells, metagenomic analysis identified a number of gut microbiota decreased in MS patients compared to healthy controls, and microbiota positively or negatively correlated with degree of disability in MS patients. MS patients demonstrated perturbations of their blood metabolome, such as linoleate metabolic pathway, fatty acid biosynthesis, chalcone, dihydrochalcone, 4-nitrocatechol and methionine. Global correlations between multi-omics demonstrated a disrupted immune-microbiome relationship and a positive blood metabolome-microbiome correlation in MS. Specific feature association analysis identified a potential correlation network linking meat servings with decreased gut microbe B. thetaiotaomicron, increased Th17 cell and greater abundance of meat-associated blood metabolites. The microbiome and metabolome profiles remained stable over six months in MS and control individuals. INTERPRETATION: Our study identified multi-system alterations in gut microbiota, immune and blood metabolome of MS patients at global and individual feature level. Multi-OMICS data integration deciphered a potential important biological network that links meat intakes with increased meat-associated blood metabolite, decreased polysaccharides digesting bacteria, and increased circulating proinflammatory marker. FUNDING: This work was supported by the Washington University in St. Louis Institute of Clinical and Translational Sciences, funded, in part, by Grant Number # UL1 TR000448 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award (Zhou Y, Piccio, L, Lovett-Racke A and Tarr PI); R01 NS10263304 (Zhou Y, Piccio L); the Leon and Harriet Felman Fund for Human MS Research (Piccio L and Cross AH). Cantoni C. was supported by the National MS Society Career Transition Fellowship (TA-180531003) and by donations from Whitelaw Terry, Jr. / Valerie Terry Fund. Ghezzi L. was supported by the Italian Multiple Sclerosis Society research fellowship (FISM 2018/B/1) and the National Multiple Sclerosis Society Post-Doctoral Fellowship (FG-190734474). Anne Cross was supported by The Manny & Rosalyn Rosenthal-Dr. John L. Trotter MS Center Chair in Neuroimmunology of the Barnes-Jewish Hospital Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Subject(s)
Gastrointestinal Microbiome , Multiple Sclerosis , Chromatography, Liquid , Gastrointestinal Microbiome/genetics , Humans , Metabolome , Metagenomics , Multiple Sclerosis/etiology , Tandem Mass Spectrometry
9.
J Neuroimmunol ; 359: 577676, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34364105

ABSTRACT

B cell depletion therapy has been shown to be beneficial in multiple sclerosis (MS). However, the mechanism by which B cell depletion mediates its beneficial effects in MS is still unclear. To better understand how B cell depletion may benefit patients with a disease previously thought to be primarily mediated by CD4 T cells, immune profiles were monitored in 48 patients in a phase II trial of ublituximab, a glycoengineered CD20 monoclonal antibody, at 18 time points over a year. As we previously described there was a significant shift in the percentages of T cells, NK cells, and myeloid cells following the initial dose of ublituximab, but this shift normalized within a week and these populations remained stable for the duration of the study. However, T cell subsets changed with an increase in the percentage of naïve CD4 and CD8 T cells and a decline in memory T cells. Importantly, the percentage of Th1 and CD4+GM-CSF+ T cells decreased, while the percentage of Tregs continued to increase over the year. Ublituximab not only depleted CD20+ B cells, but also CD20+ T cells. The favorable changes in the T cell subsets may contribute to the beneficial effects of B cell depletion therapy.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B-Lymphocytes/metabolism , Killer Cells, Natural/metabolism , Lymphocyte Depletion/methods , Multiple Sclerosis, Relapsing-Remitting/blood , T-Lymphocytes/metabolism , Antibodies, Monoclonal/pharmacology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Research Report , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
10.
J Neuroimmunol ; 359: 577675, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34403862

ABSTRACT

Myelin-specific CD4 T effector cells (Teffs), Th1 and Th17 cells, are encephalitogenic in experimental autoimmune encephalomyelitis (EAE), a well-defined murine model of multiple sclerosis (MS) and implicated in MS pathogenesis. Forkhead box O 1 (FoxO1) is a conserved effector molecule in PI3K/Akt signaling and critical in the differentiation of CD4 T cells into T helper subsets. However, it is unclear whether FoxO1 may be a target for redirecting CD4 T cell differentiation and benefit CNS autoimmunity. Using a selective FoxO1 inhibitor AS1842856, we show that inhibition of FoxO1 suppressed the differentiation and expansion of Th1 cells. The transdifferentiation of Th17 cells into encephalitogenic Th1-like cells was suppressed by FoxO1 inhibition upon reactivation of myelin-specific CD4 T cells from EAE mice. The transcriptional balance skewed from the Th1 transcription factor T-bet toward the Treg transcription factor Foxp3. Myelin-specific CD4 T cells treated with the FoxO1 inhibitor were less encephalitogenic in adoptive transfer EAE studies. Inhibition of FoxO1 in T cells from MS patients significantly suppressed the expansion of Th1 cells. Furthermore, FoxO1 inhibition with AS1842856 promoted the development of functional iTreg cells. The immune checkpoint programmed cell death protein-1 (PD-1)-induced Foxp3 expression in CD4 T cells was impaired by FoxO1 inhibition. These data illustrate an important role of FoxO1 signaling in CNS autoimmunity via regulating autoreactive Teff and Treg balance.


Subject(s)
Autoimmunity/physiology , CD4-Positive T-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Forkhead Box Protein O1/immunology , Multiple Sclerosis/immunology , Adult , Animals , Autoimmunity/drug effects , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Forkhead Box Protein O1/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Multiple Sclerosis/metabolism , Quinolones/pharmacology
11.
EBioMedicine ; 71: 103557, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34455391

ABSTRACT

BACKGROUND: The mycobiome is the fungal component of the gut microbiome and is implicated in several autoimmune diseases. However, its role in MS has not been studied. METHODS: In this case-control observational study, we performed ITS sequencing and characterised the gut mycobiome in people with MS (pwMS) and healthy controls at baseline and after six months. FINDINGS: The mycobiome had significantly higher alpha diversity and inter-subject variation in pwMS than controls. Saccharomyces and Aspergillus were over-represented in pwMS. Saccharomyces was positively correlated with circulating basophils and negatively correlated with regulatory B cells, while Aspergillus was positively correlated with activated CD16+ dendritic cells in pwMS. Different mycobiome profiles, defined as mycotypes, were associated with different bacterial microbiome and immune cell subsets in the blood. Initial treatment with dimethyl fumarate, a common immunomodulatory therapy which also has fungicidal activity, did not cause uniform gut mycobiome changes across all pwMS. INTERPRETATION: There is an alteration of the gut mycobiome in pwMS, compared to healthy controls. Further study is required to assess any causal association of the mycobiome with MS and its direct or indirect interactions with bacteria and autoimmunity. FUNDING: This work was supported by the Washington University in St. Louis Institute of Clinical and Translational Sciences, funded, in part, by Grant Number # UL1 TR000448 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award (Zhou Y, Piccio, L, Lovett-Racke A and Tarr PI); R01 NS102633-04 (Zhou Y, Piccio L); the Leon and Harriet Felman Fund for Human MS Research (Piccio L and Cross AH). Cantoni C. was supported by the National MS Society Career Transition Fellowship (TA-1805-31003) and by donations from Whitelaw Terry, Jr. / Valerie Terry Fund. Ghezzi L. was supported by the Italian Multiple Sclerosis Society research fellowship (FISM 2018/B/1) and the National Multiple Sclerosis Society Post-Doctoral Fellowship (FG- 1907-34474). Anne Cross was supported by The Manny & Rosalyn Rosenthal-Dr. John L. Trotter MS Center Chair in Neuroimmunology of the Barnes-Jewish Hospital Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Host Microbial Interactions , Multiple Sclerosis/etiology , Biomarkers , Body Mass Index , Case-Control Studies , Computational Biology/methods , Diet , Disease Susceptibility , Dysbiosis/immunology , Feces/microbiology , Gastrointestinal Microbiome/immunology , Humans , Metagenome , Metagenomics/methods , Multiple Sclerosis/blood , Multiple Sclerosis/metabolism , Mycobiome/immunology
12.
JCI Insight ; 6(4)2021 02 22.
Article in English | MEDLINE | ID: mdl-33411696

ABSTRACT

Reestablishing an appropriate balance between T effector cells (Teff) and Tregs is essential for correcting autoimmunity. Multiple sclerosis (MS) is an immune-mediated chronic CNS disease characterized by neuroinflammation, demyelination, and neuronal degeneration, in which the Teff:Treg balance is skewed toward pathogenic Teffs Th1 and Th17 cells. STAT3 is a key regulator of Teff:Treg balance. Using the structure-based design, we have developed a potentially novel small-molecule prodrug LLL12b that specifically inhibits STAT3 and suppresses Th17 differentiation and expansion. Moreover, LLL12b regulates the fate decision between Th17 and Tregs in an inflammatory environment, shifting Th17:Treg balance toward Tregs and favoring the resolution of inflammation. Therapeutic administration of LLL12b after disease onset significantly suppresses disease progression in adoptively transferred, chronic, and relapsing-remitting experimental autoimmune encephalomyelitis. Disease relapses were also significantly suppressed by LLL12b given during the remission phase. Additionally, LLL12b shifts Th17:Treg balance of CD4+ T cells from MS patients toward Tregs and increases Teff sensitivity to Treg-mediated suppression. These data suggest that selective inhibition of STAT3 by the small molecule LLL12b recalibrates the effector and regulatory arms of CD4+ T responses, representing a potentially clinically translatable therapeutic strategy for MS.


Subject(s)
Autoimmunity , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , STAT3 Transcription Factor/drug effects , T-Lymphocytes, Regulatory/immunology , Animals , Anthraquinones/pharmacology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Demyelinating Diseases/drug therapy , Demyelinating Diseases/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Sulfonamides/pharmacology , T-Lymphocytes, Regulatory/drug effects , Th17 Cells/immunology
13.
Mult Scler ; 27(3): 420-429, 2021 03.
Article in English | MEDLINE | ID: mdl-32351164

ABSTRACT

BACKGROUND: Ublituximab, a novel monoclonal antibody (mAb) targeting a unique epitope on the CD20 antigen, is glycoengineered for enhanced B-cell targeting through antibody-dependent cellular cytotoxicity (ADCC). Greater ADCC may allow lower doses and shorter infusion times versus other anti-CD20 mAbs. OBJECTIVE: The objective was to determine optimal dose, infusion time, and activity of ublituximab in relapsing multiple sclerosis. METHODS: This is a phase 2, placebo-controlled study. Patients received three ublituximab infusions (150 mg over 1-4 hours on day 1 and 450-600 mg over 1-3 hours on day 15 and week 24) in six dosing cohorts. The primary endpoint was B-cell depletion. RESULTS: In all cohorts (N = 48), median B-cell depletion was >99% by week 4, maintained at weeks 24 and 48. Most common adverse events (AEs) were infusion-related reactions (all grade 1-2), with no apparent increased incidence at shorter infusion times. There were no AE-related discontinuations. At weeks 24 and 48, no T1 gadolinium-enhancing lesions (p = 0.003) and a 10.6% decrease in T2 lesion volume (p = 0.002) were detected. The annualized relapse rate was 0.07; 93% remained relapse free on study. Overall, 74% of patients had no evidence of disease activity (NEDA). CONCLUSION: Ublituximab was safely infused as rapid as 1 hour, producing robust B-cell depletion and profound reductions in magnetic resonance imaging (MRI) activity and relapses.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Antibodies, Monoclonal , Antigens, CD20 , Humans , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Recurrence
14.
Front Neurol ; 11: 19, 2020.
Article in English | MEDLINE | ID: mdl-32082243

ABSTRACT

Low vitamin D during childhood is associated with an increased risk of developing multiple sclerosis (MS) as an adult. Given that vitamin D has anti-inflammatory properties, it has been postulated that the relationship between MS and low vitamin D is due to immune dysregulation. Since the vitamin D receptor (VDR) is expressed in many cell types, this study investigated an alternative hypothesis-neuron-specific VDR signaling induces anti-inflammatory molecules that protect the central nervous system from autoimmunity. Using media from neurons treated with calcitriol, the active form of vitamin D3, LPS-activated microglia had a reduction in pro-inflammatory molecules, and a reciprocal induction of anti-inflammatory molecules. Since IL-34 is critical to the homeostasis of microglia, and was previously shown to be induced in endothelial cells by vitamin D, we investigated IL-34 as the potential anti-inflammatory molecule induced in neurons by vitamin D. Treatment of LPS-activated microglia with IL-34 reduced pro-inflammatory cytokine production and enhanced the expression of anti-inflammatory transcripts. However, neutralizing IL-34 in vitamin D neuronal conditioned media only impacted IL-6 and not the broader anti-inflammatory phenotype of microglia. To mimic low vitamin D in children, we used a neuron-specific inducible mouse model in which VDR was partially deleted in juvenile mice. Partial deletion of VDR in neurons during early life resulted in exacerbated CNS autoimmunity in adult mice. Overall, the study illustrated that vitamin D signaling in neurons promotes an anti-inflammatory state in microglia, and low vitamin D in early life may enhance CNS autoimmunity.

15.
J Neuroimmunol ; 332: 187-197, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31077854

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system, thought to be mediated by myelin-specific CD4+ T cells. However, B cell depletion has proven to be an effective therapy for MS, but the mechanism is not well understood. This study was designed to determine how B cell depletion changes lymphocyte profiles. During a phase IIa clinical trial with ublituximab, a novel CD20 antibody, blood was collected from 48 MS patients at 11 time points over 24 weeks and the lymphocyte profiles were analyzed by flow cytometry. The percentage of naïve CD4+ and CD8+ T cells increased, while the percentage of both effector and central memory T cells declined. CD4+ Th1 effector cells decreased, while there was a significant increase in CD4+ regulatory T cells. The depletion of B cells had a favorable shift in the lymphocyte landscape, reducing the number of naïve T cells becoming activated and transitioning to memory T cells. The ratio of Th1 cells to CD4+ regulatory T cells declined, suggesting that immune regulation was being restored. These data suggest that loss of B cells as antigen presenting cells is a major mechanism of action for the beneficial effects of CD20 antibody therapy in MS.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Lymphocyte Depletion , Multiple Sclerosis, Relapsing-Remitting/drug therapy , T-Lymphocyte Subsets/immunology , Adolescent , Adult , Antibodies, Monoclonal/pharmacology , Antigens, CD20/immunology , Female , Humans , Immunologic Memory , Killer Cells, Natural/immunology , Lymphocyte Activation , Lymphocyte Count , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/immunology , Myeloid Cells/immunology , T-Lymphocytes, Regulatory/immunology , Young Adult
16.
J Neuroimmunol ; 325: 20-28, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30366205

ABSTRACT

B lymphocyte-induced maturation protein (Blimp-1) is a transcription factor that regulates effector/memory B cells and CD8 T cells. Here we show that Blimp-1 is expressed in both Th1 and Th17 cells in vitro and highly expressed in effector/memory myelin-specific CD4 T cells in experimental autoimmune encephalomyelitis (EAE) mice. The immunized Blimp-1 conditional knockout mice have a significantly delayed disease onset but enhanced disease severity during the effector phase compared to their wild-type littermates, suggesting that Blimp-1 is a unique transcription factor with distinct roles in the regulation of myelin-specific CD4 T cells during priming and effector phase of EAE.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Positive Regulatory Domain I-Binding Factor 1/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Positive Regulatory Domain I-Binding Factor 1/metabolism
17.
Front Immunol ; 9: 1255, 2018.
Article in English | MEDLINE | ID: mdl-29915594

ABSTRACT

Identifying molecules that are differentially expressed in encephalitogenic T cells is critical to the development of novel and specific therapies for multiple sclerosis (MS). In this study, IL-3 was identified as a molecule highly expressed in encephalitogenic Th1 and Th17 cells, but not in myelin-specific non-encephalitogenic Th1 and Th17 cells. However, B10.PL IL-3-deficient mice remained susceptible to experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Furthermore, B10.PL myelin-specific T cell receptor transgenic IL-3-/- Th1 and Th17 cells were capable of transferring EAE to wild-type mice. Antibody neutralization of IL-3 produced by encephalitogenic Th1 and Th17 cells failed to alter their ability to transfer EAE. Thus, IL-3 is highly expressed in myelin-specific T cells capable of inducing EAE compared to activated, non-encephalitogenic myelin-specific T cells. However, loss of IL-3 in encephalitogenic T cells does not reduce their pathogenicity, indicating that IL-3 is a marker of encephalitogenic T cells, but not a critical element in their pathogenic capacity.


Subject(s)
Autoimmunity , Central Nervous System/immunology , Central Nervous System/metabolism , Interleukin-3/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Alleles , Animals , Autoimmunity/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Genotype , Interleukin-3/genetics , Mice , Mice, Knockout , Mice, Transgenic , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
18.
Front Mol Neurosci ; 10: 344, 2017.
Article in English | MEDLINE | ID: mdl-29123469

ABSTRACT

The development of neuroprotective and repair strategies for treating progressive multiple sclerosis (MS) requires new insights into axonal injury. 4-aminopyridine (4-AP), a blocker of voltage-gated K+ (Kv) channels, is used in symptomatic treatment of progressive MS, but the underlying mechanism remains unclear. Here we report that deleting Kv3.1-the channel with the highest 4-AP sensitivity-reduces clinical signs in experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. In Kv3.1 knockout (KO) mice, EAE lesions in sensory and motor tracts of spinal cord were markedly reduced, and radial astroglia were activated with increased expression of brain derived neurotrophic factor (BDNF). Kv3.3/Kv3.1 and activated BDNF receptors were upregulated in demyelinating axons in EAE and MS lesions. In spinal cord myelin coculture, BDNF treatment promoted myelination, and neuronal firing via altering channel expression. Therefore, suppressing Kv3.1 alters neural circuit activity, which may enhance BNDF signaling and hence protect axons from inflammatory insults.

19.
JCI Insight ; 2(17)2017 09 07.
Article in English | MEDLINE | ID: mdl-28878115

ABSTRACT

The factors that promote the differentiation of pathogenic T cells in autoimmune diseases are poorly defined. Use of genetically modified mice has provided insight into molecules necessary for the development of autoimmunity, but the sum of the data has led to contradictory observations based on what is currently known about specific molecules in specific signaling pathways. To define the minimum signals required for development of encephalitogenic T cells that cause CNS autoimmunity, myelin-specific T cells were differentiated with various cytokine cocktails, and pathogenicity was determined by transfer into mice. IL-6+IL-23 or IL-12+IL-23 generated encephalitogenic T cells and recapitulated the essential cytokine signals provided by antigen-presenting cells, and both IL-6 and IL-12 induced IL-23 receptor expression on both mouse and human naive T cells. IL-23 signaled through both STAT3 and STAT4, and disruption in STAT4 signaling impaired CNS autoimmunity independent of IL-12. These data explain why IL-12-deficient mice develop CNS autoimmunity, while STAT4-deficient mice are resistant. CD4+ memory T cells from multiple sclerosis patients had significantly higher levels of p-STAT3/p-STAT4, and p-STAT3/p-STAT4 heterodimers were observed upon IL-23 signaling, suggesting that p-STAT3/p-STAT4 induced by IL-23 signaling orchestrate the generation of pathogenic T cells in CNS autoimmunity, regardless of Th1 or Th17 phenotype.


Subject(s)
Autoimmunity , Central Nervous System/immunology , Multiple Sclerosis/immunology , Receptors, Interleukin/metabolism , STAT3 Transcription Factor/metabolism , STAT4 Transcription Factor/metabolism , Th1 Cells/immunology , Th17 Cells/immunology , Adolescent , Adult , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Cells, Cultured , Female , Humans , Immunologic Memory , Interleukin-12/administration & dosage , Interleukin-23/administration & dosage , Interleukin-6/administration & dosage , Male , Mice , Middle Aged , Signal Transduction , Young Adult
20.
Eur J Immunol ; 47(3): 446-453, 2017 03.
Article in English | MEDLINE | ID: mdl-28102541

ABSTRACT

Transforming growth factor beta (TGF-ß) is a pleiotropic cytokine that has been shown to influence the differentiation and function of T cells. The role that TGF-ß plays in immune-mediated disease, such as multiple sclerosis (MS), has become a major area of investigation since CD4+ T cells appear to be a major mediator of autoimmunity. This review provides an analysis of the literature on the role that TGF-ß plays in the generation and regulation of encephalitogenic and regulatory T cells (Treg) in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, as well as in T cells of MS patients. Since TGF-ß plays a major role in the development and function of both CD4+ effector and Treg, which are defective in MS patients, recent studies have found potential mechanisms to explain the basis for these T-cell defects to establish a foundation for potentially modulating TGF-ß signaling to restore normal T-cell function in MS patients.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/metabolism , Animals , Autoantigens/immunology , Autoimmunity , Disease Models, Animal , Humans , Mice , Signal Transduction , Transforming Growth Factor beta/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...