Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 36(11): 978-989, 2009 Nov.
Article in English | MEDLINE | ID: mdl-32688709

ABSTRACT

Thermal imaging using infrared (IR) is now an established technology for the study of stomatal responses and for phenotyping plants for differences in stomatal behaviour. This paper outlines the potential applications of IR sensing in drought phenotyping, with particular emphasis on a description of the problems with extrapolation of the technique from the study of single leaves in controlled environments to the study of plant canopies is field plots, with examples taken from studies on grapevine (Vitis vinifera L.) and rice (Oryza sativa L.). Particular problems include the sensitivity of leaf temperature (and potentially the temperature of reference surfaces) to both temporal and spatial variation in absorbed radiation, with leaf temperature varying by as much as 15°C between full sun and deep shade. Examples of application of the approach to phenotyping in the field and the steps in data analysis are outlined, demonstrating that clear genotypic variation may be detected despite substantial variation in soil moisture status or incident radiation by the use of appropriate normalisation techniques.

2.
J Agric Food Chem ; 55(11): 4493-500, 2007 May 30.
Article in English | MEDLINE | ID: mdl-17469842

ABSTRACT

The influence of irrigation strategy on grape berry carotenoids and C13-norisoprenoid precursors was investigated for Vitis vinifera L. cv. Cabernet Sauvignon. Two irrigation treatments were compared, one in which vines received reduced irrigation applied alternately to either side of the vine (partial rootzone drying, PRD) and a second control treatment in which water was applied to both sides of the vine. Over the two years of the experiments, PRD vines received on average 66% of the water applied to the controls. Initially, the PRD treatment did not alter midday leaf (psiL) and stem (psiS) water potential relative to the control, but decreased stomatal conductance (gs). Continued exposure to the PRD treatment resulted in treated grapevines experiencing hydraulic water deficit relative to the control treatment and induced lowered midday psiL and psiS, which was also reflected in decreased berry weight at harvest. In both irrigation treatments, the most abundant grape berry carotenoids, beta-carotene and lutein, followed the developmental pattern typical of other grape varieties, decreasing post-veraison. At certain points in time, as the fruit approached maturity, the concentration of these carotenoids was increased in fruit of PRD-treated vines relative to the controls. This effect was greater for lutein than for beta-carotene. PRD consistently caused increases in the concentration of hydrolytically released C13-norisoprenoids beta-damascenone, beta-ionone, and 1,1,6-trimethyl-1,2-dihydronaphthalene in fruit at harvest (24 degrees Brix) over two seasons. The effect of the PRD treatment on the concentration of hydrolytically released C13-norisoprenoids was greater in the second of the two seasons of the experiment and was also reflected in an increase in total C13-norisoprenoid content per berry. This suggests that the increases in the concentration of the C13-norisoprenoids in response to PRD were independent of water deficit induced changes in berry size and were not the result of an altered berry surface area to volume ratio.


Subject(s)
Fruit/metabolism , Norisoprenoids/biosynthesis , Vitis/metabolism , Water/metabolism , Lutein/analysis , Lutein/metabolism , Random Allocation , Solid Phase Microextraction , South Australia , beta Carotene/analysis , beta Carotene/metabolism
3.
Funct Plant Biol ; 31(6): 659-669, 2004 Jul.
Article in English | MEDLINE | ID: mdl-32688937

ABSTRACT

Gradients were observed in xylem sap ABA and in stomatal conductance along canes of Vitis vinifera L. cv. Shiraz. To investigate the source of the ABA responsible for these gradients a series of girdling and decapitation experiments were carried out. Leaf stomatal conductance and bulk ABA of leaves and apices were measured in control plants and in response to apex removal or girdling. Gradients in leaf ABA were observed over the first eight expanded leaves of field-grown Shiraz, with higher concentrations of ABA observed towards the apex. Gradients in stomatal conductance that correlated negatively with the concentration of ABA in the leaf ([ABA]leaf) were also observed over the first eight leaves. No significant effect of decapitation was observed on either leaf ABA or stomatal conductance except for the leaf immediately below the apex where a transient increase in [ABA]leaf was observed after 24 h with no corresponding decrease in conductance. Girdling resulted in an increase in [ABA]leaf in leaves distal to the girdle without the corresponding effect on conductance. These effects were further studied at the level of gene activity. To facilitate this, gene sequences encoding two key enzymes involved in the biosynthetic pathway of ABA in grape, zeaxanthin epoxidase (Zep) and 9-cis-epoxycarotenoid dioxygenase (NCED), were isolated and characterised. The cDNA sequences were used as probes to measure the abundances of their respective mRNAs in the leaf and apical material. Levels of expression of one of the two genes encoding NCED, VvNCED1, reflected the gradients in [ABA]leaf in control vines, however treatment-induced changes in ABA were not always associated with corresponding changes in VvNCED1 expression. The abundances of both the VvNCED2 mRNA and Zep mRNA increased with increasing leaf age and did not appear to be associated with either the [ABA]leaf or the expression of VvNCED1.

SELECTION OF CITATIONS
SEARCH DETAIL
...