Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transplantation ; 103(10): 2090-2104, 2019 10.
Article in English | MEDLINE | ID: mdl-31283686

ABSTRACT

BACKGROUND: The aims of this study were to evaluate the efficacy of US Food and Drug Administration-approved drugs in genetically engineered pig-to-baboon kidney xenotransplantation and compare the results with those using an anti-CD40 monoclonal antibody (mAb)-based regimen. METHODS: Ten life-supporting kidney transplants were carried out in baboons using α1,3-galactosyltransferase gene-knockout/CD46 pigs with various other genetic manipulations aimed at controlling coagulation dysregulation. Eight transplants resulted in informative data. Immunosuppressive therapy consisted of induction with antithymocyte globulin and anti-CD20mAb, and maintenance based on either (1) CTLA4-Ig and/or tacrolimus (+rapamycin or mycophenolate mofetil) (GroupA [US Food and Drug Administration-approved regimens], n = 4) or (2) anti-CD40mAb + rapamycin (GroupB, n = 4). All baboons received corticosteroids, interleukin-6R blockade, and tumor necrosis factor-α blockade. Baboons were followed by clinical and laboratory monitoring of kidney function, coagulation, and immune parameters. At euthanasia, morphological and immunohistochemical studies were performed on the kidney grafts. RESULTS: The median survival in GroupB was 186 days (range 90-260), which was significantly longer than in GroupA; median 14 days (range 12-32) (P < 0.01). Only GroupA baboons developed consumptive coagulopathy and the histopathological features of thrombotic microangiopathic glomerulopathy and interstitial arterial vasculitis. CONCLUSIONS: Recognizing that the pig donors in each group differed in some genetic modifications, these data indicate that maintenance immunosuppression including anti-CD40mAb may be important to prevent pig kidney graft failure.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Graft Rejection/prevention & control , Immunosuppressive Agents/administration & dosage , Kidney Transplantation/adverse effects , Life Support Care/methods , Animals , Animals, Genetically Modified , CD40 Antigens/antagonists & inhibitors , CD40 Antigens/immunology , Disease Models, Animal , Galactosyltransferases/genetics , Gene Knockout Techniques , Graft Rejection/immunology , Graft Rejection/mortality , Graft Survival/drug effects , Graft Survival/immunology , Heterografts/drug effects , Heterografts/immunology , Humans , Kidney/drug effects , Kidney/immunology , Kidney Transplantation/methods , Membrane Cofactor Protein/genetics , Papio , Swine/genetics , Transplantation, Heterologous/adverse effects , Transplants/drug effects , Transplants/immunology
2.
Data Brief ; 20: 1965-1974, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30294651

ABSTRACT

This report is related to the research article entitled "B cell phenotypes in baboons with pig artery patch grafts receiving conventional immunosuppressive therapy" (Yamamoto et al., in press). Herein we provide the data regarding pig artery patch xenotransplantation into the baboon׳s aorta, trough levels of tacrolimus and rapamycin in the blood after transplantation, analysis of B cell phenotype on the basis of IgD and CD27 expression in the blood, and analysis of T cell phenotype on the basis of CD28 and CD95 expression in the blood.

3.
Transpl Immunol ; 51: 12-20, 2018 12.
Article in English | MEDLINE | ID: mdl-30092338

ABSTRACT

BACKGROUND: In the pig-to-baboon artery patch model with no immunosuppressive therapy, a graft from an α1,3-galactosyltransferase gene-knockout (GTKO) pig elicits a significant anti-nonGal IgG response, indicating sensitization to the graft. A costimulation blockade-based regimen, e.g., anti-CD154mAb or anti-CD40mAb, prevents sensitization. However, neither of these agents is currently FDA-approved. The aim of the present study was to determine the efficacy of FDA-approved agents on the T and B cell responses. METHODS: Artery patch xenotransplantation in baboons was carried out using GTKO/CD46 pigs with (n = 2) or without (n = 1) the mutant transgene for CIITA-knockdown. Immunosuppressive therapy consisted of induction with ATG and anti-CD20mAb, and maintenance with different combinations of CTLA4-Ig, tacrolimus, and rapamycin. In addition, all 3 baboons received daily corticosteroids, the IL-6R blocker, tocilizumab, at regular intervals, and the TNF-α blocker, etanercept, for the first 2 weeks. Recipient blood was monitored for anti-nonGal antibody levels by flow cytometry (using GTKO/CD46 pig aortic endothelial cells), and mixed lymphocyte reaction (MLR). CD22+B cell profiles (naïve [IgD+/CD27-], non-switched memory [IgD+/CD27+], and switched memory [IgD-/CD27+] B cell subsets) were measured by flow cytometry. At 6 months, the baboons were euthanized and the grafts were examined histologically. RESULTS: No elicited anti-pig antibodies developed in any baboon. The frequency of naïve memory B cells increased significantly (from 34% to 90%, p = 0.0015), but there was a significant decrease in switched memory B cells (from 17% to 0.5%, p = 0.015). MLR showed no increase in the proliferative T cell response in those baboons that had received CTLA4-Ig (n = 2). Histological examination showed few or no features of rejection in any graft. CONCLUSIONS: The data suggest that immunosuppressive therapy with only FDA-approved agents may be adequate to prevent an adaptive immune response to a genetically-engineered pig graft, particularly if CTLA4-Ig is included in the regimen, in part because the development of donor-specific memory B cells is inhibited.


Subject(s)
Abatacept/therapeutic use , Arteries/transplantation , B-Lymphocytes/immunology , Graft Rejection/drug therapy , Immunosuppressive Agents/therapeutic use , Papio/immunology , Sirolimus/therapeutic use , T-Lymphocytes/immunology , Tacrolimus/therapeutic use , Adaptive Immunity , Animals , Cells, Cultured , Drug Approval , Galactosyltransferases/genetics , Gene Knockout Techniques , Graft Rejection/immunology , Phenotype , Swine/genetics , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...