Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(20): 11639-11662, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32969660

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a rare and devastating chronic lung disease of unknown etiology. Despite the approved treatment options nintedanib and pirfenidone, the medical need for a safe and well-tolerated antifibrotic treatment of IPF remains high. The human prostaglandin F receptor (hFP-R) is widely expressed in the lung tissue and constitutes an attractive target for the treatment of fibrotic lung diseases. Herein, we present our research toward novel quinoline-based hFP-R antagonists, including synthesis and detailed structure-activity relationship (SAR). Starting from a high-throughput screening (HTS) hit of our corporate compound library, multiple parameter improvements-including increase of the relative oral bioavailability Frel from 3 to ≥100%-led to a highly potent and selective hFP-R antagonist with complete oral absorption from suspension. BAY-6672 (46) represents-to the best of our knowledge-the first reported FP-R antagonist to demonstrate in vivo efficacy in a preclinical animal model of lung fibrosis, thus paving the way for a new treatment option in IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/drug therapy , Lung/drug effects , Quinolines/chemical synthesis , Receptors, Prostaglandin/antagonists & inhibitors , Administration, Oral , Animals , Disease Models, Animal , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung/pathology , Male , Mice , Molecular Structure , Quinolines/chemistry , Quinolines/therapeutic use , Rats , Rats, Wistar , Structure-Activity Relationship
2.
Drug Metab Dispos ; 46(11): 1546-1555, 2018 11.
Article in English | MEDLINE | ID: mdl-30171161

ABSTRACT

Mass balance and biotransformation of finerenone, a nonsteroidal mineralocorticoid receptor antagonist, were investigated in four healthy male volunteers following a single oral administration of 10 mg (78 µCi) of [14C]finerenone and compared with data from studies in dogs and rats. The total recovery of the administered radioactivity was 101% in humans, 94.7% in dogs, and 95.2% in rats. In humans, radioactivity was mainly excreted renally (80%); in rats, it was primarily the biliary/fecal route (76%); and in dogs, excretion was more balanced. Finerenone was extensively metabolized in all species by oxidative biotransformation, with minor amounts of unchanged drug in excreta (humans: 1%; dogs, rats: <9%). In vitro studies suggested cytochrome P450 3A4 was the predominant enzyme involved in finerenone metabolism in humans. Primary metabolic transformation involved aromatization of the dihydronaphthyridine moiety of metabolite M1 as a major clearance pathway with a second oxidative pathway leading to M4. These were both prone to further oxidative biotransformation reactions. Naphthyridine metabolites (M1-M3) were the dominant metabolites identified in human plasma, with no on-target pharmacological activity. In dog plasma, finerenone and metabolite M2 constituted the major components; finerenone accounted almost exclusively for drug-related material in rat plasma. For metabolites M1-M3, axial chirality was observed, represented by two atropisomers (e.g., M1a and M1b). Analysis of plasma and excreta showed one atropisomer (a-series, >79%) of each metabolite predominated in all three species. In summary, the present study demonstrates that finerenone is cleared by oxidative biotransformation, mainly via naphthyridine derivatives.


Subject(s)
Biotransformation/physiology , Mineralocorticoid Receptor Antagonists/metabolism , Naphthyridines/metabolism , Administration, Oral , Aged , Animals , Bile/metabolism , Cytochrome P-450 CYP3A/metabolism , Dogs , Feces/chemistry , Female , Humans , Male , Middle Aged , Oxidation-Reduction , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...