Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 36(2): 194-209.e9, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31408619

ABSTRACT

Cancer-associated mutations in genes encoding RNA splicing factors (SFs) commonly occur in leukemias, as well as in a variety of solid tumors, and confer dependence on wild-type splicing. These observations have led to clinical efforts to directly inhibit the spliceosome in patients with refractory leukemias. Here, we identify that inhibiting symmetric or asymmetric dimethylation of arginine, mediated by PRMT5 and type I protein arginine methyltransferases (PRMTs), respectively, reduces splicing fidelity and results in preferential killing of SF-mutant leukemias over wild-type counterparts. These data identify genetic subsets of cancer most likely to respond to PRMT inhibition, synergistic effects of combined PRMT5 and type I PRMT inhibition, and a mechanistic basis for the therapeutic efficacy of PRMT inhibition in cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Ethylenediamines/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrroles/pharmacology , RNA Splicing/drug effects , RNA, Neoplasm/metabolism , Animals , Antineoplastic Agents/pharmacokinetics , Catalysis , Enzyme Inhibitors/pharmacokinetics , Ethylenediamines/pharmacokinetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , K562 Cells , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Pyrroles/pharmacokinetics , RNA, Neoplasm/genetics , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , THP-1 Cells , Tumor Cells, Cultured , U937 Cells , Xenograft Model Antitumor Assays
2.
Life Sci Alliance ; 1(5): e201800157, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30456384

ABSTRACT

The extent of and the oncogenic role played by alternative splicing (AS) in cancer are well documented. Nonetheless, only few studies have attempted to dissect individual gene function at an isoform level. Here, we focus on the AS of splicing factors during prostate cancer progression, as these factors are known to undergo extensive AS and have the potential to affect hundreds of downstream genes. We identified exon 7 (ex7) in the MBNL1 (Muscleblind-like 1) transcript as being the most differentially included exon in cancer, both in cell lines and in patients' samples. In contrast, MBNL1 overall expression was down-regulated, consistently with its described role as a tumor suppressor. This observation holds true in the majority of cancer types analyzed. We first identified components associated to the U2 splicing complex (SF3B1, SF3A1, and PHF5A) as required for efficient ex7 inclusion and we confirmed that this exon is fundamental for MBNL1 protein homodimerization. We next used splice-switching antisense oligonucleotides (AONs) or siRNAs to compare the effect of MBNL1 splicing isoform switching with knockdown. We report that whereas the absence of MBNL1 is tolerated in cancer cells, the expression of isoforms lacking ex7 (MBNL1 Δex7) induces DNA damage and inhibits cell viability and migration, acting as dominant negative proteins. Our data demonstrate the importance of studying gene function at the level of alternative spliced isoforms and support our conclusion that MBNL1 Δex7 proteins are antisurvival factors with a defined tumor suppressive role that cancer cells tend to down-regulate in favor of MBNL +ex7 isoforms.

SELECTION OF CITATIONS
SEARCH DETAIL
...