Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Age Ageing ; 53(Supplement_2): ii47-ii59, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38745492

ABSTRACT

Hippocampal neurogenesis (HN) occurs throughout the life course and is important for memory and mood. Declining with age, HN plays a pivotal role in cognitive decline (CD), dementia, and late-life depression, such that altered HN could represent a neurobiological susceptibility to these conditions. Pertinently, dietary patterns (e.g., Mediterranean diet) and/or individual nutrients (e.g., vitamin D, omega 3) can modify HN, but also modify risk for CD, dementia, and depression. Therefore, the interaction between diet/nutrition and HN may alter risk trajectories for these ageing-related brain conditions. Using a subsample (n = 371) of the Three-City cohort-where older adults provided information on diet and blood biobanking at baseline and were assessed for CD, dementia, and depressive symptomatology across 12 years-we tested for interactions between food consumption, nutrient intake, and nutritional biomarker concentrations and neurogenesis-centred susceptibility status (defined by baseline readouts of hippocampal progenitor cell integrity, cell death, and differentiation) on CD, Alzheimer's disease (AD), vascular and other dementias (VoD), and depressive symptomatology, using multivariable-adjusted logistic regression models. Increased plasma lycopene concentrations (OR [95% CI] = 1.07 [1.01, 1.14]), higher red meat (OR [95% CI] = 1.10 [1.03, 1.19]), and lower poultry consumption (OR [95% CI] = 0.93 [0.87, 0.99]) were associated with an increased risk for AD in individuals with a neurogenesis-centred susceptibility. Increased vitamin D consumption (OR [95% CI] = 1.05 [1.01, 1.11]) and plasma γ-tocopherol concentrations (OR [95% CI] = 1.08 [1.01, 1.18]) were associated with increased risk for VoD and depressive symptomatology, respectively, but only in susceptible individuals. This research highlights an important role for diet/nutrition in modifying dementia and depression risk in individuals with a neurogenesis-centred susceptibility.


Subject(s)
Cognitive Dysfunction , Dementia , Depression , Hippocampus , Neurogenesis , Nutritional Status , Humans , Aged , Male , Female , Depression/psychology , Depression/metabolism , Depression/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/psychology , Cognitive Dysfunction/epidemiology , Dementia/psychology , Dementia/epidemiology , Dementia/blood , Dementia/etiology , Risk Factors , Hippocampus/metabolism , Aging/psychology , Aged, 80 and over , Cognition , Age Factors , Diet/adverse effects , Cognitive Aging/psychology , Biomarkers/blood
2.
Int J Sport Nutr Exerc Metab ; 34(3): 154-163, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38266631

ABSTRACT

This study investigated the effects of the timing of caffeine (3 mg/kg body mass) ingestion on three-point shooting accuracy and other performance parameters during a basketball exercise simulation test (BEST). Eighteen college basketball players (mean ± SD: age = 24.4 ± 1.5 years, height = 181.7 ± 9.5 cm, body mass = 80.9 ± 13.2 kg) underwent one familiarization trial and three main conditions in a randomized order: (a) placebo (maltodextrin) and placebo, (b) caffeine and placebo, and (c) placebo and caffeine. Participants ingested either the placebo or caffeine pill 75 and 15 min before performing four quarters of the BEST and a three-point shooting protocol. During each quarter, participants completed 16 rounds of the BEST and ten three-point shots. Vertical jump height, 6 m sprint timing, BEST completion timing, three-point shooting accuracy, heart rate, rate of perceived exertion, blood glucose, blood lactate, and psychological measures pertaining to performance were measured. The BEST completion timing differed among conditions (placebo and placebo = 26.4 ± 2.0 s, caffeine and placebo = 25.8 ± 2.0 s, placebo and caffeine = 25.9 ± 2.1 s; p = .031) but not three-point shooting accuracy (placebo and placebo = 12.33 ± 4.10; caffeine and placebo = 12.61 ± 2.81; placebo and caffeine = 11.67 ± 3.77; p = .648), vertical jump height, or sprint times. Manipulating ingestion timing of caffeine did not improve three-point shooting accuracy, vertical jump height, or 6 m sprint timings, but caffeine can improve performance times during simulated basketball exercise irrespective of ingestion timing.


Subject(s)
Athletic Performance , Basketball , Humans , Young Adult , Adult , Caffeine , Athletic Performance/physiology , Basketball/physiology , Exercise Test , Eating
3.
Environ Res ; 234: 116392, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37302739

ABSTRACT

Air pollution is one of the leading causes of overall mortality globally. Cooking emissions are a major source of fine particulate matter (PM2.5). However, studies on their potential perturbations on the nasal microbiota as well as their association with respiratory health are lacking. This pilot study aims to assess the environmental air quality among occupational cooks and its associations with nasal microbiota and respiratory symptoms. A total of 20 cooks (exposed) and 20 unexposed controls (mainly office workers), were recruited in Singapore from 2019 to 2021. Information on sociodemographic factors, cooking methods, and self-reported respiratory symptoms were collected using a questionnaire. Personal PM2.5 concentrations and reactive oxygen species (ROS) levels were measured using portable sensors and filter samplers. DNA was extracted from nasal swabs and sequenced using 16s sequencing. Alpha-diversity and beta-diversity were calculated, and between-group variation analysis of species was performed. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between exposure groups and self-reported respiratory symptoms. Higher daily mean PM2.5 (P = 2 × 10-7) and environmental ROS exposure (P = 3.25 × 10-7) were observed in the exposed group. Alpha diversity of the nasal microbiota between the two groups was not significantly different. However, beta diversity was significantly different (unweighted UniFrac P = 1.11 × 10-5, weighted UniFrac P = 5.42 × 10-6) between the two exposure groups. In addition, certain taxa of bacteria were slightly more abundant in the exposed group compared to unexposed controls. There were no significant associations between the exposure groups and self-reported respiratory symptoms. In summary, the exposed group had higher PM2.5 and ROS exposure levels and altered nasal microbiotas as compared to unexposed controls, though further studies are required to replicate these findings in a larger population.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Humans , Pilot Projects , Reactive Oxygen Species/analysis , Environmental Exposure/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Gases , Cooking , Air Pollutants/analysis , Air Pollution, Indoor/analysis
4.
Lancet Reg Health West Pac ; 33: 100710, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36851942

ABSTRACT

Background: Obesity and related metabolic disturbances including diabetes, hypertension and hyperlipidemia predict future cognitive decline. Asia has a high prevalence of both obesity and metabolic disease, potentially amplifying the future burden of dementia in the region. We aimed to investigate the impact of adiposity and metabolic risk on cognitive function in Asian populations, using an epidemiological analysis and a two-sample Mendelian Randomization (MR) study. Methods: The Health for Life in Singapore (HELIOS) Study is a population-based cohort of South-East-Asian men and women in Singapore, aged 30-84 years. We analyzed 8769 participants with metabolic and cognitive data collected between 2018 and 2021. Whole-body fat mass was quantified with Dual X-Ray Absorptiometry (DEXA). Cognition was assessed using a computerized cognitive battery. An index of general cognition ' g ' was derived through factor analysis. We tested the relationship of fat mass indices and metabolic measures with ' g ' using regression approaches. We then performed inverse-variance-weighted MR of adiposity and metabolic risk factors on ' g ', using summary statistics for genome-wide association studies of BMI, visceral adipose tissue (VAT), waist-hip-ratio (WHR), blood pressure, HDL cholesterol, triglycerides, fasting glucose, HbA1c, and general cognition. Findings: Participants were 58.9% female, and aged 51.4 (11.3) years. In univariate analysis, all 29 adiposity and metabolic measures assessed were associated with ' g ' at P < 0.05. In multivariable analyses, reduced ' g ' was consistently associated with increased visceral fat mass index and lower HDL cholesterol (P < 0.001), but not with blood pressure, triglycerides, or glycemic indices. The reduction in ' g ' associated with 1SD higher visceral fat, or 1SD lower HDL cholesterol, was equivalent to a 0.7 and 0.9-year increase in chronological age respectively (P < 0.001). Inverse variance MR analyses showed that reduced ' g ' is associated with genetically determined elevation of VAT, BMI and WHR (all P < 0.001). In contrast, MR did not support a causal role for blood pressure, lipid, or glycemic indices on cognition. Interpretation: We show an independent relationship between adiposity and cognition in a multi-ethnic Asian population. MR analyses suggest that both visceral adiposity and raised BMI are likely to be causally linked to cognition. Our findings have important implications for preservation of cognitive health, including further motivation for action to reverse the rising burden of obesity in the Asia-Pacific region. Funding: The Nanyang Technological University-the Lee Kong Chian School of Medicine, National Healthcare Group, National Medical Research Council, Ministry of Education, Singapore.

5.
Appetite ; 180: 106361, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36332849

ABSTRACT

Portion size selection is an indicator of appetite and within younger adults, is predicted by factors such as expected satiety, liking and motivations to achieve an ideal sensation of fullness (i.e., implicit satiety goals). Currently, there is limited research available on the determinants of portion size selection within older adults. Therefore, the current study aimed to examine the relationship between individual differences in implicit satiety goals, food-related expectations, and portion size selection in older adults. Free-living older adult Singaporeans (N = 115; Nmales = 62; age: M = 66.21 years, SD = 4.78, range = 60-83 years) participated as part of the Brain, Ageing, Microbiome, Muscle, Bone, and Exercise Study (BAMMBE). Participants completed questionnaires on their subjective requirements for experiencing different states of satiety and food-related expectations (i.e., liking, how filling) as well as a computerised portion size selection task. Using a multiple regression, we found that goals to feel comfortably full (B = 3.08, SE = 1.04, t = 2.96, p = .004) and to stop hunger (B = -2.25, SE = 0.82, t = -2.75, p = .007) significantly predicted larger portion size selection (R2 = 0.24, F(4,87) = 6.74, p < .001). Larger portion sizes (R2 = 0.53, F(5,90) = 20.58, p < .001) were also predicted by greater expected satiety (B = 0.47, SE = 0.09, t = 5.15, p < .001) and lower perceptions of how filling foods are (B = -2.92, SE = 0.77, t = -3.79, p < .001) but not liking (B = -0.09, SE = 0.91, t = -0.10, p = .925) or frequency (B = -18.42, SE = 16.91, t = -1.09, p = .279) of consumption of target foods. Comparing our findings to results of studies conducted with younger adults suggests the influence of factors such as satiety related goals on portion size selection may change with ageing while the influence of other factors (e.g., expected satiety/fullness delivered by foods) may remain consistent. These findings may inform future strategies to increase/decrease portion size accordingly to ensure older adults maintain an appropriate healthy weight.


Subject(s)
Exercise , Humans , Aged , Middle Aged , Aged, 80 and over , Surveys and Questionnaires
6.
Nutrients ; 14(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36364950

ABSTRACT

The gut microbiome is involved in nutrient metabolism and produces metabolites that, via the gut−brain axis, signal to the brain and influence cognition. Human studies have so far had limited success in identifying early metabolic alterations linked to cognitive aging, likely due to limitations in metabolite coverage or follow-ups. Older persons from the Three-City population-based cohort who had not been diagnosed with dementia at the time of blood sampling were included, and repeated measures of cognition over 12 subsequent years were collected. Using a targeted metabolomics platform, we identified 72 circulating gut-derived metabolites in a case−control study on cognitive decline, nested within the cohort (discovery n = 418; validation n = 420). Higher serum levels of propionic acid, a short-chain fatty acid, were associated with increased odds of cognitive decline (OR for 1 SD = 1.40 (95% CI 1.11, 1.75) for discovery and 1.26 (1.02, 1.55) for validation). Additional analyses suggested mediation by hypercholesterolemia and diabetes. Propionic acid strongly correlated with blood glucose (r = 0.79) and with intakes of meat and cheese (r > 0.15), but not fiber (r = 0.04), suggesting a minor role of prebiotic foods per se, but a possible link to processed foods, in which propionic acid is a common preservative. The adverse impact of propionic acid on metabolism and cognition deserves further investigation.


Subject(s)
Brain-Gut Axis , Cognitive Dysfunction , Humans , Aged , Aged, 80 and over , Case-Control Studies , Cognitive Dysfunction/metabolism , Metabolomics
7.
Mol Psychiatry ; 27(8): 3425-3440, 2022 08.
Article in English | MEDLINE | ID: mdl-35794184

ABSTRACT

Environmental factors like diet have been linked to depression and/or relapse risk in later life. This could be partially driven by the food metabolome, which communicates with the brain via the circulatory system and interacts with hippocampal neurogenesis (HN), a form of brain plasticity implicated in depression aetiology. Despite the associations between HN, diet and depression, human data further substantiating this hypothesis are largely missing. Here, we used an in vitro model of HN to test the effects of serum samples from a longitudinal ageing cohort of 373 participants, with or without depressive symptomology. 1% participant serum was applied to human fetal hippocampal progenitor cells, and changes in HN markers were related to the occurrence of depressive symptoms across a 12-year period. Key nutritional, metabolomic and lipidomic biomarkers (extracted from participant plasma and serum) were subsequently tested for their ability to modulate HN. In our assay, we found that reduced cell death and increased neuronal differentiation were associated with later life depressive symptomatology. Additionally, we found impairments in neuronal cell morphology in cells treated with serum from participants experiencing recurrent depressive symptoms across the 12-year period. Interestingly, we found that increased neuronal differentiation was modulated by increased serum levels of metabolite butyrylcarnitine and decreased glycerophospholipid, PC35:1(16:0/19:1), levels - both of which are closely linked to diet - all in the context of depressive symptomology. These findings potentially suggest that diet and altered HN could subsequently shape the trajectory of late-life depressive symptomology.


Subject(s)
Depression , Neurogenesis , Humans , Depression/metabolism , Cohort Studies , Neurogenesis/physiology , Hippocampus , Diet , Aging
8.
Nat Genet ; 54(8): 1214-1226, 2022 08.
Article in English | MEDLINE | ID: mdl-35864190

ABSTRACT

Cirrhosis is usually a late-onset and life-threatening disease characterized by fibrotic scarring and inflammation that disrupts liver architecture and function. While it is typically the result of alcoholism or hepatitis viral infection in adults, its etiology in infants is much less understood. In this study, we report 14 children from ten unrelated families presenting with a syndromic form of pediatric liver cirrhosis. By genome/exome sequencing, we found recessive variants in FOCAD segregating with the disease. Zebrafish lacking focad phenocopied the human disease, revealing a signature of altered messenger RNA (mRNA) degradation processes in the liver. Using patient's primary cells and CRISPR-Cas9-mediated inactivation in human hepatic cell lines, we found that FOCAD deficiency compromises the SKI mRNA surveillance pathway by reducing the levels of the RNA helicase SKIC2 and its cofactor SKIC3. FOCAD knockout hepatocytes exhibited lowered albumin expression and signs of persistent injury accompanied by CCL2 overproduction. Our results reveal the importance of FOCAD in maintaining liver homeostasis and disclose a possible therapeutic intervention point via inhibition of the CCL2/CCR2 signaling axis.


Subject(s)
Liver Cirrhosis , Tumor Suppressor Proteins , Adult , Animals , Child , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Syndrome , Tumor Suppressor Proteins/genetics , Zebrafish/genetics
9.
Alzheimers Res Ther ; 14(1): 1, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34980257

ABSTRACT

BACKGROUND: Fatty acids play prominent roles in brain function as they participate in structural, metabolic and signaling processes. The homeostasis of fatty acids and related pathways is known to be impaired in cognitive decline and dementia, but the relationship between these metabolic disturbances and common risk factors, namely the ɛ4 allele of the apolipoprotein E (ApoE-ɛ4) gene and sex, remains elusive. METHODS: In order to investigate early alterations associated with cognitive decline in the fatty acid-related serum metabolome, we here applied targeted metabolomics analysis on a nested case-control study (N=368), part of a prospective population cohort on dementia. RESULTS: When considering the entire study population, circulating levels of free fatty acids, acyl-carnitines and pantothenic acid were found to be increased among those participants who had greater odds of cognitive decline over a 12-year follow-up. Interestingly, stratified analyses indicated that these metabolomic alterations were specific for ApoE-ɛ4 non-carriers and women. CONCLUSIONS: Altogether, our results highlight that the regulation of fatty acids and related metabolic pathways during ageing and cognitive decline depends on complex inter-relationships between the ApoE-ε4 genotype and sex. A better understanding of the ApoE-ɛ4 and sex dependent modulation of metabolism is essential to elucidate the individual variability in the onset of cognitive decline, which would help develop personalized therapeutic approaches.


Subject(s)
Apolipoprotein E4 , Cognitive Dysfunction , Fatty Acids , Alleles , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Case-Control Studies , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Fatty Acids/metabolism , Female , Genotype , Humans , Male , Neuropsychological Tests , Prospective Studies , Sex Factors
10.
Alzheimers Dement ; 18(4): 654-675, 2022 04.
Article in English | MEDLINE | ID: mdl-34402599

ABSTRACT

INTRODUCTION: Diet and exercise influence the risk of cognitive decline (CD) and dementia through the food metabolome and exercise-triggered endogenous factors, which use the blood as a vehicle to communicate with the brain. These factors might act in concert with hippocampal neurogenesis (HN) to shape CD and dementia. METHODS: Using an in vitro neurogenesis assay, we examined the effects of serum samples from a longitudinal cohort (n = 418) on proxy HN readouts and their association with future CD and dementia across a 12-year period. RESULTS: Altered apoptosis and reduced hippocampal progenitor cell integrity were associated with exercise and diet and predicted subsequent CD and dementia. The effects of exercise and diet on CD specifically were mediated by apoptosis. DISCUSSION: Diet and exercise might influence neurogenesis long before the onset of CD and dementia. Alterations in HN could signify the start of the pathological process and potentially represent biomarkers for CD and dementia.


Subject(s)
Cognitive Dysfunction , Dementia , Cognitive Dysfunction/pathology , Dementia/pathology , Diet , Hippocampus/pathology , Humans , Metabolome , Neurogenesis
11.
Mol Nutr Food Res ; 65(23): e2100606, 2021 12.
Article in English | MEDLINE | ID: mdl-34661340

ABSTRACT

SCOPE: Diet is considered an important modulator of cognitive decline and dementia, but the available evidence is, however, still fragmented and often inconsistent. METHODS AND RESULTS: The article studies the long-term prospective Three-City Cohort, which consists of two separate nested case-control sample sets from different geographic regions (Bordeaux, n = 418; Dijon, n = 424). Cognitive decline is evaluated through five neuropsychological tests (Mini-Mental State Examination, Benton Visual Retention Test, Isaac's Set Test, Trail-Making Test part A, and Trail-Making Test part B). The food-related and microbiota-derived circulating metabolome is studied in participants free of dementia at baseline, by subjecting serum samples to large-scale quantitative metabolomics analysis. A protective association is found between metabolites derived from cocoa, coffee, mushrooms, red wine, the microbial metabolism of polyphenol-rich foods, and cognitive decline, as well as a negative association with metabolites related to unhealthy dietary components, such as artificial sweeteners and alcohol. CONCLUSION: These results provide insight into the early metabolic events that are associated with the later risk to develop cognitive decline within the crosstalk between diet, gut microbiota and the endogenous metabolism, which can help identify potential targets for preventive and therapeutic strategies to preserve cognitive health.


Subject(s)
Cognitive Dysfunction , Gastrointestinal Microbiome , Microbiota , Aged , Cognitive Dysfunction/etiology , Food , Humans , Prospective Studies
12.
Front Microbiol ; 12: 659465, 2021.
Article in English | MEDLINE | ID: mdl-33995322

ABSTRACT

In the last 150 years, we have seen a significant increase in average life expectancy, associated with a shift from infectious to non-communicable diseases. The rising incidence of these diseases, for which age is often the largest risk factor, highlights the need for contemporary societies to improve healthy ageing for their growing silver generations. As ageing is an inevitable, non-reversing and highly individualised process, we need to better understand how non-genetic factors like diet choices and commensal gut microbes can modulate the biology of ageing. In this review, we discuss how geographical and ethnic variations influence habitual dietary patterns, nutrient structure, and gut microbial profiles with potential impact on the human healthspan. Several gut microbial genera have been associated with healthy elderly populations but are highly variable across populations. It seems unlikely that a universal pro-longevity gut microbiome exists. Rather, the optimal microbiome appears to be conditional on the microbial functionality acting on regional- and ethnicity-specific trends driven by cultural food context. We also highlight dietary and microbial factors that have been observed to elicit individual and clustered biological responses. Finally, we identify next generation avenues to modify otherwise fixed host functions and the individual ageing trajectory by manipulating the malleable gut microbiome with regionally adapted, personalised food intervention regimens targeted at prolonging human healthspan.

13.
Food Chem ; 357: 129757, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33872868

ABSTRACT

Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29-103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03-0.76 min and interval width of 0.33-8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet's accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.

14.
EBioMedicine ; 64: 103216, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33508744

ABSTRACT

BACKGROUND: Brain lipid metabolism appears critical for cognitive aging, but whether alterations in the lipidome relate to cognitive decline remains unclear at the system level. METHODS: We studied participants from the Three-City study, a multicentric cohort of older persons, free of dementia at time of blood sampling, and who provided repeated measures of cognition over 12 subsequent years. We measured 189 serum lipids from 13 lipid classes using shotgun lipidomics in a case-control sample on cognitive decline (matched on age, sex and level of education) nested within the Bordeaux study center (discovery, n = 418). Associations with cognitive decline were investigated using bootstrapped penalized regression, and tested for validation in the Dijon study center (validation, n = 314). FINDINGS: Among 17 lipids identified in the discovery stage, lower levels of the triglyceride TAG50:5, and of four membrane lipids (sphingomyelin SM40:2,2, phosphatidylethanolamine PE38:5(18:1/20:4), ether-phosphatidylethanolamine PEO34:3(16:1/18:2), and ether-phosphatidylcholine PCO34:1(16:1/18:0)), and higher levels of PCO32:0(16:0/16:0), were associated with greater odds of cognitive decline, and replicated in our validation sample. INTERPRETATION: These findings indicate that in the blood lipidome of non-demented older persons, a specific profile of lipids involved in membrane fluidity, myelination, and lipid rafts, is associated with subsequent cognitive decline. FUNDING: The complete list of funders is available at the end of the manuscript, in the Acknowledgement section.


Subject(s)
Aging/blood , Aging/psychology , Cognitive Dysfunction/blood , Cognitive Dysfunction/epidemiology , Lipidomics , Lipids/blood , Aged , Aged, 80 and over , Biomarkers , Case-Control Studies , Cognitive Dysfunction/diagnosis , Cohort Studies , Comorbidity , Female , Geriatric Assessment , Humans , Lipidomics/methods , Male , Public Health Surveillance , Reproducibility of Results
15.
Front Cell Dev Biol ; 8: 806, 2020.
Article in English | MEDLINE | ID: mdl-33015033

ABSTRACT

The age-associated reduction in the proliferation of neural stem cells (NSCs) has been associated with cognitive decline. Numerous factors have been shown to modulate this process, including dietary components. Frequent consumption of caffeine has been correlated with an increased risk of cognitive decline, but further evidence of a negative effect on hippocampal progenitor proliferation is limited to animal models. Here, we used a human hippocampal progenitor cell line to investigate the effects of caffeine on hippocampal progenitor integrity and proliferation specifically. The effects of five caffeine concentrations (0 mM = control, 0.1 mM ∼ 150 mg, 0.25 mM ∼ 400 mg, 0.5 mM ∼ 750 mg, and 1.0 mM ∼ 1500 mg) were measured following acute (1 day) and repeated (3 days) exposure. Immunocytochemistry was used to quantify hippocampal progenitor integrity (i.e., SOX2- and Nestin-positive cells), proliferation (i.e., Ki67-positive cells), cell count (i.e., DAPI-positive cells), and apoptosis (i.e., CC3-positive cells). We found that progenitor integrity was significantly reduced in supraphysiological caffeine conditions (i.e., 1.0 mM ∼ 1500 mg), but relative to the lowest caffeine condition (i.e., 0.1 mM ∼ 150 mg) only. Moreover, repeated exposure to supraphysiological caffeine concentrations (i.e., 1.0 mM ∼ 1500 mg) was found to affect proliferation, significantly reducing % Ki67-positive cells relative to control and lower caffeine dose conditions (i.e., 0.1 mM ∼ 150 mg and 0.25 mM ∼ 400 mg). Caffeine treatment did not influence apoptosis and there were no significant differences in any measure between lower doses of caffeine (i.e., 0.1 mM, 0.25 mM, 0.5 mM) - representative of daily human caffeine intake - and control conditions. Our study demonstrates that dietary components such as caffeine can influence NSC integrity and proliferation and may be indicative of a mechanism by which diet affects cognitive outcomes.

16.
Mol Nutr Food Res ; : e2000527, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33120436

ABSTRACT

SCOPE: Coffee and tea are among the most popular beverages in the world. However, the association between habitual coffee, green tea, and black tea consumption with metabolomics profiles in Asian populations remain largely unknown. METHODS AND RESULTS: 158 metabolites (14 amino acids, 45 acylcarnitines, and 99 sphingolipids) in the blood plasma of participants are measured from the population-based Singapore Prospective Study Program cohort using mass spectrometry (MS). Linear regression models are used to obtain the estimates for the association between coffee and tea consumption with metabolite levels, adjusted for potential confounders and false discovery rate (FDR). Coffee consumption is significantly associated with higher levels of 63 sphingolipids (29 sphingomyelins, 32 ceramides, a sphingosine-1-phosphate, and a sphingosine) and lower levels of 13 acylcarnitines and alanine. Black tea consumption is significantly associated with higher levels of eight sphingolipids, and lower levels of an amino acid, whereas green tea is significantly inversely associated with four metabolites (C8:1-OH acylcarnitine, ganglioside GM3 d18:1/16:0, sphingomyelins d18:2/18:0 and d18:1/14:0). CONCLUSIONS: Coffee, black tea, and green tea consumption are associated with plasma levels of certain classes of sphingolipids and acylcarnitines in an Asian population, particularly sphingomyelins, which may mediate the health benefits of these beverages.

17.
Mol Nutr Food Res ; 63(18): e1900177, 2019 09.
Article in English | MEDLINE | ID: mdl-31218777

ABSTRACT

SCOPE: Untargeted metabolomics may reveal preventive targets in cognitive aging, including within the food metabolome. METHODS AND RESULTS: A case-control study nested in the prospective Three-City study includes participants aged ≥65 years and initially free of dementia. A total of 209 cases of cognitive decline and 209 controls (matched for age, gender, education) with slower cognitive decline over up to 12 years are contrasted. Using untargeted metabolomics and bootstrap-enhanced penalized regression, a baseline serum signature of 22 metabolites associated with subsequent cognitive decline is identified. The signature includes three coffee metabolites, a biomarker of citrus intake, a cocoa metabolite, two metabolites putatively derived from fish and wine, three medium-chain acylcarnitines, glycodeoxycholic acid, lysoPC(18:3), trimethyllysine, glucose, cortisol, creatinine, and arginine. Adding the 22 metabolites to a reference predictive model for cognitive decline (conditioned on age, gender, education and including ApoE-ε4, diabetes, BMI, and number of medications) substantially increases the predictive performance: cross-validated Area Under the Receiver Operating Curve = 75% [95% CI 70-80%] compared to 62% [95% CI 56-67%]. CONCLUSIONS: The untargeted metabolomics study supports a protective role of specific foods (e.g., coffee, cocoa, fish) and various alterations in the endogenous metabolism responsive to diet in cognitive aging.


Subject(s)
Blood/metabolism , Cognitive Dysfunction/blood , Dementia/blood , Diet , Aged , Aged, 80 and over , Blood Chemical Analysis , Case-Control Studies , Coffea , Cognitive Dysfunction/metabolism , Dementia/metabolism , Eating , Female , Fish Products , Humans , Longitudinal Studies , Male , Metabolomics/methods
18.
Metabolites ; 8(3)2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30149593

ABSTRACT

Bioactive compounds present in plant-based foods, and their metabolites derived from gut microbiota and endogenous metabolism, represent thousands of chemical structures of potential interest for human nutrition and health. State-of-the-art analytical methodologies, including untargeted metabolomics based on high-resolution mass spectrometry, are required for the profiling of these compounds in complex matrices, including plant food materials and biofluids. The aim of this project was to compare the analytical coverage of untargeted metabolomics methods independently developed and employed in various European platforms. In total, 56 chemical standards representing the most common classes of bioactive compounds spread over a wide chemical space were selected and analyzed by the participating platforms (n = 13) using their preferred untargeted method. The results were used to define analytical criteria for a successful analysis of plant food bioactives. Furthermore, they will serve as a basis for an optimized consensus method.

19.
Food Chem ; 207: 214-22, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27080899

ABSTRACT

Mango and banana cell structures, which survived in vivo mastication and in vitro gastrointestinal digestion, were fermented in vitro for 48h. For both fruits, flavonoids and phenolic acids were liberated and underwent microbial metabolism involving ring fission, dehydroxylation and decarboxylation. UHPLC-PDA/Q-ToF-MS profiles revealed rapid degradation (72-78%) of most intact precursors (epicatechin and several unidentified compounds) within 10h, before the exponential phase of the cumulative gas production. Concomitant formation of catabolites (e.g. 4-hydroxyphenylacetic acid) occurred within 4-8h, while metabolism of catechin derivative and 3-(4-hydroxyphenyl)propanoic acid continued slowly for at least 48h, suggesting intact plant cell walls can be a controlling factor in microbial susceptibility. Untargeted PCA and OPLS-DA demonstrated clear classifications in the compositional fruit type and compound profiles as a function of time. Clusters and distinct discriminating compounds were recognised, which could lead to subsequent biomarker identification for establishing differences in polyphenol microbial metabolism of various fruit matrices.


Subject(s)
Colon/metabolism , Flavonoids/metabolism , Fruit/chemistry , Gastrointestinal Microbiome , Hydroxybenzoates/metabolism , Biotransformation , Colon/microbiology , Flavonoids/pharmacokinetics , Humans , Hydroxybenzoates/pharmacokinetics , Mangifera/chemistry , Musa/chemistry
20.
Food Funct ; 6(8): 2464-74, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26215214

ABSTRACT

Fruits (and vegetables) contain cellular structures that are not degraded by human digestive enzymes. Therefore, the structure of the insoluble fraction of swallowed fruits is mostly retained until intestinal microbial fermentation. In vitro fermentation of mango and banana cell structures, which survived in vivo mastication and in vitro gastrointestinal digestion, were incubated with porcine faecal inoculum and showed intensive metabolic activity. This included degradation of cell walls, leading to the release of encapsulated cell contents for further microbial metabolism. Production of cumulative gas, short chain fatty acids and ammonia were greater for mango than for banana. Microscopic and spectroscopic analyses showed this was due to a major fermentation-resistant starch fraction present in banana, that was absent in mango. This study demonstrated distinctive differences in the fermentability of banana and mango, reflecting a preferential degradation of (parenchyma) fleshy cell walls over resistant starch in banana, and the thick cellulosic vascular fibres in mango.


Subject(s)
Dietary Fiber/metabolism , Mangifera/metabolism , Musa/metabolism , Starch/metabolism , Ammonia/metabolism , Animals , Dietary Fiber/analysis , Fatty Acids, Volatile/metabolism , Fermentation , Fruit/chemistry , Fruit/metabolism , Gastrointestinal Tract/metabolism , Humans , Mangifera/chemistry , Mastication , Musa/chemistry , Particle Size , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...