Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Pathol ; 262(1): 105-120, 2024 01.
Article in English | MEDLINE | ID: mdl-37850574

ABSTRACT

HOXB13 is a key lineage homeobox transcription factor that plays a critical role in the differentiation of the prostate gland. Several studies have suggested that HOXB13 alterations may be involved in prostate cancer development and progression. Despite its potential biological relevance, little is known about the expression of HOXB13 across the disease spectrum of prostate cancer. To this end, we validated a HOXB13 antibody using genetic controls and investigated HOXB13 protein expression in murine and human developing prostates, localized prostate cancers, and metastatic castration-resistant prostate cancers. We observed that HOXB13 expression increases during later stages of murine prostate development. All localized prostate cancers showed HOXB13 protein expression. Interestingly, lower HOXB13 expression levels were observed in higher-grade tumors, although no significant association between HOXB13 expression and recurrence or disease-specific survival was found. In advanced metastatic prostate cancers, HOXB13 expression was retained in the majority of tumors. While we observed lower levels of HOXB13 protein and mRNA levels in tumors with evidence of lineage plasticity, 84% of androgen receptor-negative castration-resistant prostate cancers and neuroendocrine prostate cancers (NEPCs) retained detectable levels of HOXB13. Notably, the reduced expression observed in NEPCs was associated with a gain of HOXB13 gene body CpG methylation. In comparison to the commonly used prostate lineage marker NKX3.1, HOXB13 showed greater sensitivity in detecting advanced metastatic prostate cancers. Additionally, in a cohort of 837 patients, 383 with prostatic and 454 with non-prostatic tumors, we found that HOXB13 immunohistochemistry had a 97% sensitivity and 99% specificity for prostatic origin. Taken together, our studies provide valuable insight into the expression pattern of HOXB13 during prostate development and cancer progression. Furthermore, our findings support the utility of HOXB13 as a diagnostic biomarker for prostate cancer, particularly to confirm the prostatic origin of advanced metastatic castration-resistant tumors. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Animals , Humans , Male , Mice , Genes, Homeobox , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , United Kingdom
2.
Cell Rep ; 42(10): 113221, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37815914

ABSTRACT

Advanced prostate cancers are treated with therapies targeting the androgen receptor (AR) signaling pathway. While many tumors initially respond to AR inhibition, nearly all develop resistance. It is critical to understand how prostate tumor cells respond to AR inhibition in order to exploit therapy-induced phenotypes prior to the outgrowth of treatment-resistant disease. Here, we comprehensively characterize the effects of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics, and bioenergetics approaches. The metabolic response to AR inhibition is defined by reduced glycolysis, robust elongation of mitochondria, and increased reliance on mitochondrial oxidative metabolism. We establish DRP1 activity and MYC signaling as mediators of AR-blockade-induced metabolic phenotypes. Rescuing DRP1 phosphorylation after AR inhibition restores mitochondrial fission, while rescuing MYC restores glycolytic activity and prevents sensitivity to complex I inhibition. Our study provides insight into the regulation of treatment-induced metabolic phenotypes and vulnerabilities in prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Humans , Male , Androgens/metabolism , Cell Line, Tumor , Prostatic Neoplasms/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , Signal Transduction
3.
JCI Insight ; 8(7)2023 04 10.
Article in English | MEDLINE | ID: mdl-36821396

ABSTRACT

Prostate-specific membrane antigen (PSMA) is an important cell surface target in prostate cancer. There are limited data on the heterogeneity of PSMA tissue expression in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, the mechanisms regulating PSMA expression (encoded by the FOLH1 gene) are not well understood. Here, we demonstrate that PSMA expression is heterogeneous across different metastatic sites and molecular subtypes of mCRPC. In a rapid autopsy cohort in which multiple metastatic sites per patient were sampled, we found that 13 of 52 (25%) cases had no detectable PSMA and 23 of 52 (44%) cases showed heterogeneous PSMA expression across individual metastases, with 33 (63%) cases harboring at least 1 PSMA-negative site. PSMA-negative tumors displayed distinct transcriptional profiles with expression of druggable targets such as MUC1. Loss of PSMA was associated with epigenetic changes of the FOLH1 locus, including gain of CpG methylation and loss of histone 3 lysine 27 (H3K27) acetylation. Treatment with histone deacetylase (HDAC) inhibitors reversed this epigenetic repression and restored PSMA expression in vitro and in vivo. Collectively, these data provide insights into the expression patterns and regulation of PSMA in mCRPC and suggest that epigenetic therapies - in particular, HDAC inhibitors - can be used to augment PSMA levels.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/metabolism , Treatment Outcome , Prostate-Specific Antigen , Histone Deacetylase Inhibitors
4.
Am J Pathol ; 193(1): 4-10, 2023 01.
Article in English | MEDLINE | ID: mdl-36309102

ABSTRACT

Basal cell carcinoma (BCC) of the prostate is a rare tumor. Compared with the more common acinar adenocarcinoma (AAC) of the prostate, BCCs show features of basal cell differentiation and are thought to be biologically distinct from AAC. The spectrum of molecular alterations of BCC has not been comprehensively described, and genomic studies are lacking. Herein, whole genome sequencing was performed on archival formalin-fixed, paraffin-embedded specimens of two cases with BCC. Prostatic BCCs were characterized by an overall low copy number and mutational burden. Recurrent copy number loss of chromosome 16 was observed. In addition, putative driver gene alterations in KIT, DENND3, PTPRU, MGA, and CYLD were identified. Mechanistically, depletion of the CYLD protein resulted in increased proliferation of prostatic basal cells in vitro. Collectively, these studies show that prostatic BCC displays distinct genomic alterations from AAC and highlight a potential role for loss of chromosome 16 in the pathogenesis of this rare tumor type.


Subject(s)
Carcinoma, Basal Cell , Prostatic Neoplasms , Skin Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostate/pathology , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Skin Neoplasms/pathology , Genomics , Receptor-Like Protein Tyrosine Phosphatases, Class 2 , Guanine Nucleotide Exchange Factors
5.
Cancer Res Commun ; 2(5): 277-285, 2022 05.
Article in English | MEDLINE | ID: mdl-36337169

ABSTRACT

Anaplastic lymphoma kinase (ALK) is a tyrosine kinase with genomic and expression changes in many solid tumors. ALK inhibition is first line therapy for lung cancers with ALK alterations, and an effective therapy in other tumor types, but has not been well-studied in prostate cancer. Here, we aim to delineate the role of ALK genomic and expression changes in primary and metastatic prostate cancer. We determined ALK expression by immunohistochemistry and RNA-Seq, and genomic alterations by NGS. We assessed functional consequences of ALK overexpression and pharmacological ALK inhibition by cell proliferation and cell viability assays. Among 372 primary prostate cancer cases we identified one case with uniformly high ALK protein expression. Genomic analysis revealed a SLC45A3-ALK fusion which promoted oncogenesis in in vitro assays. We observed ALK protein expression in 5/52 (9%) of metastatic prostate cancer cases, of which 4 of 5 had neuroendocrine features. ALK-expressing neuroendocrine prostate cancer had a distinct transcriptional program, and earlier disease progression. An ALK-expressing neuroendocrine prostate cancer model was sensitive to pharmacological ALK inhibition. In summary, we found that ALK overexpression is rare in primary prostate cancer, but more frequent in metastatic prostate cancers with neuroendocrine differentiation. Further, ALK fusions similar to lung cancer are an occasional driver in prostate cancer. Our data suggest that ALK-directed therapies could be an option in selected patients with advanced prostate cancer.


Subject(s)
Lung Neoplasms , Prostatic Neoplasms , Male , Humans , Anaplastic Lymphoma Kinase/genetics , Protein Kinase Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Protein-Tyrosine Kinases/genetics , Prostatic Neoplasms/drug therapy
6.
J Biol Chem ; 298(12): 102690, 2022 12.
Article in English | MEDLINE | ID: mdl-36372232

ABSTRACT

RNA Polymerase I (Pol I) synthesizes rRNA, which is the first and rate-limiting step in ribosome biogenesis. Factors governing the stability of the polymerase complex are not known. Previous studies characterizing Pol I inhibitor BMH-21 revealed a transcriptional stress-dependent pathway for degradation of the largest subunit of Pol I, RPA194. To identify the E3 ligase(s) involved, we conducted a cell-based RNAi screen for ubiquitin pathway genes. We establish Skp-Cullin-F-box protein complex F-box protein FBXL14 as an E3 ligase for RPA194. We show that FBXL14 binds to RPA194 and mediates RPA194 ubiquitination and degradation in cancer cells treated with BMH-21. Mutation analysis in yeast identified lysines 1150, 1153, and 1156 on Rpa190 relevant for the protein degradation. These results reveal the regulated turnover of Pol I, showing that the stability of the catalytic subunit is controlled by the F-box protein FBXL14 in response to transcription stress.


Subject(s)
F-Box Proteins , SKP Cullin F-Box Protein Ligases , Transcription, Genetic , Catalytic Domain , F-Box Proteins/genetics , F-Box Proteins/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitination , Humans , Transcription, Genetic/genetics
7.
Cancers (Basel) ; 14(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35158857

ABSTRACT

The discovery of small, "cave-like" invaginations at the plasma membrane, called caveola, has opened up a new and exciting research area in health and diseases revolving around this cellular ultrastructure. Caveolae are rich in cholesterol and orchestrate cellular signaling events. Within caveola, the caveola-associated proteins, caveolins and cavins, are critical components for the formation of these lipid rafts, their dynamics, and cellular pathophysiology. Their alterations underlie human diseases such as lipodystrophy, muscular dystrophy, cardiovascular disease, and diabetes. The expression of caveolins and cavins is modulated in tumors and in tumor stroma, and their alterations are connected with cancer progression and treatment resistance. To date, although substantial breakthroughs in cancer drug development have been made, drug resistance remains a problem leading to treatment failures and challenging translation and bench-to-bedside research. Here, we summarize the current progress in understanding cancer drug resistance in the context of caveola-associated molecules and tumor stroma and discuss how we can potentially design therapeutic avenues to target these molecules in order to overcome treatment resistance.

8.
Prostate ; 81(15): 1159-1171, 2021 11.
Article in English | MEDLINE | ID: mdl-34402095

ABSTRACT

BACKGROUND: Resistance to androgen deprivation therapies is a major driver of mortality in advanced prostate cancer. Therefore, there is a need to develop new preclinical models that allow the investigation of resistance mechanisms and the assessment of drugs for the treatment of castration-resistant prostate cancer. METHODS: We generated two novel cell line models (LAPC4-CR and VCaP-CR) which were derived by passaging LAPC4 and VCaP cells in vivo and in vitro under castrate conditions. We performed detailed transcriptomic (RNA-seq) and proteomic analyses (SWATH-MS) to delineate expression differences between castration-sensitive and castration-resistant cell lines. Furthermore, we characterized the in vivo and in vitro growth characteristics of these novel cell line models. RESULTS: The two cell line derivatives LAPC4-CR and VCaP-CR showed castration-resistant growth in vitro and in vivo which was only minimally inhibited by AR antagonists, enzalutamide, and bicalutamide. High-dose androgen treatment resulted in significant growth arrest of VCaP-CR but not in LAPC4-CR cells. Both cell lines maintained AR expression, but exhibited distinct expression changes on the mRNA and protein level. Integrated analyses including data from LNCaP and the previously described castration-resistant LNCaP-abl cells revealed an expression signature of castration resistance. CONCLUSIONS: The two novel cell line models LAPC4-CR and VCaP-CR and their comprehensive characterization on the RNA and protein level represent important resources to study the molecular mechanisms of castration resistance.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/pathology , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Male , Phenotype
9.
Cancer Lett ; 503: 11-18, 2021 04 10.
Article in English | MEDLINE | ID: mdl-33484754

ABSTRACT

The hexosamine biosynthetic pathway (HBP) is a glucose metabolism pathway that results in the synthesis of a nucleotide sugar UDP-GlcNAc, which is subsequently used for the post-translational modification (O-GlcNAcylation) of intracellular proteins that regulate nutrient sensing and stress response. The HBP is carried out by a series of enzymes, many of which have been extensively implicated in cancer pathophysiology. Increasing evidence suggests that elevated activation of the HBP may act as a cancer biomarker. Inhibition of HBP enzymes could suppress tumor cell growth, modulate the immune response, reduce resistance, and sensitize tumor cells to conventional cancer therapy. Therefore, targeting the HBP may serve as a novel strategy for treating cancer patients. Here, we review the current findings on the significance of HBP enzymes in various cancers and discuss future approaches for exploiting HBP inhibition for cancer treatment.


Subject(s)
Biosynthetic Pathways , Hexosamines/biosynthesis , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biosynthetic Pathways/drug effects , Cell Proliferation , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasms/drug therapy , Uridine Diphosphate N-Acetylglucosamine/metabolism
10.
Mol Cancer Res ; 18(9): 1414-1426, 2020 09.
Article in English | MEDLINE | ID: mdl-32493699

ABSTRACT

Lipid uptake occurs through caveolae, plasma membrane invaginations formed by caveolins (CAV) and caveolae-associated protein 1 (CAVIN1). Genetic alterations of CAV1N1 and CAV1 modify lipid metabolism and underpin lipodystrophy syndromes. Lipids contribute to tumorigenesis by providing fuel to cancer metabolism and supporting growth and signaling. Tumor stroma promotes tumor proliferation, invasion, and metastasis, but how stromal lipids influence these processes remain to be defined. Here, we show that stromal CAVIN1 regulates lipid abundance in the prostate cancer microenvironment and suppresses metastasis. We show that depletion of CAVIN1 in prostate stromal cells markedly reduces their lipid droplet accumulation and increases inflammation. Stromal cells lacking CAVIN1 enhance prostate cancer cell migration and invasion. Remarkably, they increase lipid uptake and M2 inflammatory macrophage infiltration in the primary tumors and metastasis to distant sites. Our data support the concept that stromal cells contribute to prostate cancer aggressiveness by modulating lipid content and inflammation in the tumor microenvironment. IMPLICATIONS: This study showed that stromal CAVIN1 suppresses prostate cancer metastasis by modulating tumor microenvironment, lipid content, and inflammatory response.


Subject(s)
Inflammation/genetics , Lipid Metabolism/genetics , Prostatic Neoplasms/genetics , RNA-Binding Proteins/metabolism , Humans , Male , Neoplasm Metastasis , Signal Transduction , Tumor Microenvironment
11.
Prostate ; 79(16): 1837-1851, 2019 12.
Article in English | MEDLINE | ID: mdl-31524299

ABSTRACT

BACKGROUND: Advanced prostate cancers depend on protein synthesis for continued survival and accelerated rates of metabolism for growth. RNA polymerase I (Pol I) is the enzyme responsible for ribosomal RNA (rRNA) transcription and a rate-limiting step for ribosome biogenesis. We have shown using a specific and sensitive RNA probe for the 45S rRNA precursor that rRNA synthesis is increased in prostate adenocarcinoma compared to nonmalignant epithelium. We have introduced a first-in-class Pol I inhibitor, BMH-21, that targets cancer cells of multiple origins, and holds potential for clinical translation. METHODS: The effect of BMH-21 was tested in prostate cancer cell lines and in prostate cancer xenograft and mouse genetic models. RESULTS: We show that BMH-21 inhibits Pol I transcription in metastatic, castration-resistant, and enzalutamide treatment-resistant prostate cancer cell lines. The genetic abrogation of Pol I effectively blocks the growth of prostate cancer cells. Silencing of p53, a pathway activated downstream of Pol I, does not diminish this effect. We find that BMH-21 significantly inhibited tumor growth and reduced the Ki67 proliferation index in an enzalutamide-resistant xenograft tumor model. A decrease in 45S rRNA synthesis demonstrated on-target activity. Furthermore, the Pol I inhibitor significantly inhibited tumor growth and pathology in an aggressive genetically modified Hoxb13-MYC|Hoxb13-Cre|Ptenfl/fl (BMPC) mouse prostate cancer model. CONCLUSION: Taken together, BMH-21 is a novel promising molecule for the treatment of castration-resistant prostate cancer.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms/drug therapy , RNA Polymerase I/antagonists & inhibitors , Animals , Benzamides , Cell Growth Processes/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , Humans , Male , Mice , Mice, Nude , Molecular Targeted Therapy , Nitriles , PC-3 Cells , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/enzymology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , RNA, Ribosomal/genetics , Random Allocation , Transcription, Genetic/drug effects , Xenograft Model Antitumor Assays
12.
BMC Genet ; 16: 71, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26112043

ABSTRACT

Caveolae are small, "omega-shaped" invaginations at the plasma membrane of the cell which are involved in a variety of processes including cholesterol transport, potocytosis and cell signalling. Within caveolae there are caveolae-associated proteins, and changes in expression of these molecules have been described to play a role in the pathophysiology of various diseases including cancer and cardiovascular disease. Evidence is beginning to accumulate that epigenetic processes may regulate the expression of these caveolae related genes, and hence contribute to disease progression. Here, we summarize the current knowledge of the role of epigenetic modification in regulating the expression of these caveolae related genes and how this relates to changes in cellular physiology and in health and disease.


Subject(s)
Caveolae/metabolism , Epigenesis, Genetic , Genetic Predisposition to Disease , Membrane Proteins/genetics , Animals , Caveolin 1/genetics , Caveolin 1/metabolism , Caveolin 2/genetics , Caveolin 2/metabolism , DNA Methylation , Gene Expression Regulation , Humans , Membrane Proteins/metabolism , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/metabolism , RNA Interference , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
13.
Cell Tissue Res ; 357(3): 505-13, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25107607

ABSTRACT

Polymerase-1 and release transcript factor (PTRF) was initially reported to be involved in the termination of the transcription process. More recently, it has been implicated in the formation of caveolae, cave-like structures in the plasma membrane. The effects of PTRF related to caveolae suggest that this protein may play important roles in health and disease. PTRF is highly expressed in various cells, including adipocytes, osteoblasts and muscle (cardiac, skeletal and smooth) cells. The role of PTRF in prostate cancer has been recently reviewed but there is growing evidence that PTRF is involved in other physiological processes such as cell repair and the regulation of glucose and lipid metabolism and, furthermore, altered expression of PTRF may be associated with disease. This review discusses the emerging role of PTRF in health and disease.


Subject(s)
Disease , Health , RNA-Binding Proteins/metabolism , Animals , Cellular Senescence , Humans , Lipid Metabolism , Models, Biological , RNA-Binding Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...