Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7300, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36435900

ABSTRACT

A unified picture of the electronic relaxation dynamics of ionized liquid water has remained elusive despite decades of study. Here, we employ sub-two-cycle visible to short-wave infrared pump-probe spectroscopy and ab initio nonadiabatic molecular dynamics simulations to reveal that the excess electron injected into the conduction band (CB) of ionized liquid water undergoes sequential relaxation to the hydrated electron s ground state via an intermediate state, identified as the elusive p excited state. The measured CB and p-electron lifetimes are 0.26 ± 0.02 ps and 62 ± 10 fs, respectively. Ab initio quantum dynamics yield similar lifetimes and furthermore reveal vibrational modes that participate in the different stages of electronic relaxation, with initial relaxation within the dense CB manifold coupled to hindered translational motions whereas subsequent p-to-s relaxation facilitated by librational and even intramolecular bending modes of water. Finally, energetic considerations suggest that a hitherto unobserved trap state resides ~0.3-eV below the CB edge of liquid water. Our results provide a detailed atomistic picture of the electronic relaxation dynamics of ionized liquid water with unprecedented time resolution.

2.
Nat Commun ; 10(1): 2944, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31270331

ABSTRACT

The elementary processes that accompany the interaction of ionizing radiation with biologically relevant molecules are of fundamental importance. However, the ultrafast structural rearrangement dynamics induced by the ionization of biomolecules in aqueous solution remain hitherto unknown. Here, we employ femtosecond optical pump-probe spectroscopy to elucidate the vibrational wave packet dynamics that follow the photodetachment of phenoxide, a structural mimic of tyrosine, in aqueous solution. Photodetachment of phenoxide leads to wave packet dynamics of the phenoxyl radical along 12 different vibrational modes. Eight of the modes are totally symmetric and support structural rearrangement upon electron ejection. Comparison to a previous photodetachment study of phenoxide in the gas phase reveals the important role played by the solvent environment in driving ultrafast structural reorganization induced by ionizing radiation. This work provides insight into the ultrafast molecular dynamics that follow the interaction of ionizing radiation with molecules in aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...