Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 111(1-4): 25-35, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19926161

ABSTRACT

Isotope analysis was used to examine the extent of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegradation in groundwater along a ca. 1.35-km contamination plume. Biodegradation was proposed as a natural attenuating remediation method for the contaminated aquifer. By isotope analysis of RDX, the extent of biodegradation was found to reach up to 99.5% of the initial mass at a distance of 1.15-1.35km down gradient from the contamination sources. A range of first-order biodegradation rates was calculated based on the degradation extents, with average half-life values ranging between 4.4 and 12.8years for RDX biodegradation in the upper 15m of the aquifer, assuming purely aerobic biodegradation, and between 10.9 and 31.2years, assuming purely anaerobic biodegradation. Based on the geochemical data, an aerobic biodegradation pathway was suggested as the dominant attenuation process at the site. The calculated biodegradation rate was correlated with depth, showing decreasing degradation rates in deeper groundwater layers. Exceptionally low first-order kinetic constants were found in a borehole penetrating the bottom of the aquifer, with half life ranging between 85.0 to 161.5years, assuming purely aerobic biodegradation, and between 207.5 and 394.3years, assuming purely anaerobic biodegradation. The study showed that stable isotope fractionation analysis is a suitable tool to detect biodegradation of RDX in the environment. Our findings clearly indicated that RDX is naturally biodegraded in the contaminated aquifer. To the best of our knowledge, this is the first reported use of RDX isotope analysis to quantify its biodegradation in contaminated aquifers.


Subject(s)
Environmental Monitoring/methods , Triazines/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Half-Life , Nitrogen Isotopes , Soil Pollutants/analysis
2.
Environ Sci Technol ; 42(21): 7757-63, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-19031857

ABSTRACT

Compound-specific stable isotope analysis by gas chromatography-isotope ratio mass spectrometry (GC-IRMS) is increasingly used to assess origin and fate of organic substances in the environment. Although analysis without isotopic discrimination is essential, it cannot be taken for granted for new target compounds. We developed and validated carbon isotope analysis of atrazine, a herbicide widely used in agriculture. Combustion was tested with reactors containing (i) CuO/NiO/Pt operating at 940 degrees C; (ii) CuO operating at 800 degrees C; (iii) Ni/NiO operating at 1150 degrees C and being reoxidized for 2 min during each gas chromatographic run. Accurate and precise carbon isotope measurements were only obtained with Ni/NiO reactors giving a mean deviation delta delta(13)C from dual inlet measurements of -0.1-0.2% per hundred and a standard deviation (SD) of +/- 0.4% per hundred. CuO at 800 degrees C gave precise, but inaccurate values (delta delta(13)C = -1.3% per hundred, SD +/- 0.4% per hundred), whereas CuO/NiO/Pt reactors at 940 degrees C gave inaccurate and imprecise data. Accurate (delta delta(15)N = 0.2% per hundred) and precise (SD +/- 0.3% per hundred) nitrogen isotope analysis was accomplished with a Ni/NiO-reactor previously used for carbon isotope analysis. The applicability of the method was demonstrated for alkaline hydrolysis of atrazine at 20 degrees C and pH 12 (nucleophilic aromatic substitution) giving epsilon(carbon) = -5.6% per hundred +/- 0.1% per hundred (SD) and epsilon(nitrogen) = -1.2% per hundred +/- 0.1% per hundred (SD).


Subject(s)
Atrazine/analysis , Chemistry Techniques, Analytical/instrumentation , Gas Chromatography-Mass Spectrometry/methods , Carbon , Carbon Isotopes , Environment , Hydrogen-Ion Concentration , Hydrolysis , Nitrogen Isotopes , Reference Standards , Temperature
3.
Environ Sci Technol ; 42(21): 7772-7, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-19031859

ABSTRACT

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a common contaminant at explosives production sites. Here, we report on the use of compound-specific isotope analysis of RDX to obtain delta(15)N and delta(18)O enrichment factors during biodegradation in batch cultures. A new preparation method has been developed based on RDX purification using thin-layer chromatography. RDX is then subjected to an elemental analyzer coupled with an isotope-ratio mass spectrometer (EA-IRMS). The precision of the method shows standard deviations of 0.13% per hundred and 1.18% per hundred for delta(15)N and delta(18)O, respectively, whereas the accuracy of the method has been checked routinely, adhering to external standards. The method was applied to RDX samples subjected to biodegradation under aerobic or anaerobic conditions. Enrichment factors under aerobic conditions were -2.1% per hundred and -1.7% per hundred for delta(15)N and delta(18)O, respectively, and under anaerobic conditions, -5.0% per hundred and -5.3% per hundred for delta(15)N and delta(18)O, respectively. The results of this study provide a tool for monitoring natural attenuation of RDX in a contaminated environment.


Subject(s)
Chemical Fractionation/methods , Triazines/analysis , Aerobiosis , Anaerobiosis , Biodegradation, Environmental , Chromatography, Thin Layer , Nitrogen Isotopes , Oxygen Isotopes , Reference Standards , Triazines/chemistry , Triazines/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...