Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36747859

ABSTRACT

High-throughput phenotypic screens leveraging biochemical perturbations, high-content readouts, and complex multicellular models could advance therapeutic discovery yet remain constrained by limitations of scale. To address this, we establish a method for compressing screens by pooling perturbations followed by computational deconvolution. Conducting controlled benchmarks with a highly bioactive small molecule library and a high-content imaging readout, we demonstrate increased efficiency for compressed experimental designs compared to conventional approaches. To prove generalizability, we apply compressed screening to examine transcriptional responses of patient-derived pancreatic cancer organoids to a library of tumor-microenvironment (TME)-nominated recombinant protein ligands. Using single-cell RNA-seq as a readout, we uncover reproducible phenotypic shifts induced by ligands that correlate with clinical features in larger datasets and are distinct from reference signatures available in public databases. In sum, our approach enables phenotypic screens that interrogate complex multicellular models with rich phenotypic readouts to advance translatable drug discovery as well as basic biology.

2.
Cancer Res ; 83(3): 441-455, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36459568

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has been classified into classical and basal-like transcriptional subtypes by bulk RNA measurements. However, recent work has uncovered greater complexity to transcriptional subtypes than was initially appreciated using bulk RNA expression profiling. To provide a deeper understanding of PDAC subtypes, we developed a multiplex immunofluorescence (mIF) pipeline that quantifies protein expression of six PDAC subtype markers (CLDN18.2, TFF1, GATA6, KRT17, KRT5, and S100A2) and permits spatially resolved, single-cell interrogation of pancreatic tumors from resection specimens and core needle biopsies. Both primary and metastatic tumors displayed striking intratumoral subtype heterogeneity that was associated with patient outcomes, existed at the scale of individual glands, and was significantly reduced in patient-derived organoid cultures. Tumor cells co-expressing classical and basal markers were present in > 90% of tumors, existed on a basal-classical polarization continuum, and were enriched in tumors containing a greater admixture of basal and classical cell populations. Cell-cell neighbor analyses within tumor glands further suggested that co-expressor cells may represent an intermediate state between expression subtype poles. The extensive intratumoral heterogeneity identified through this clinically applicable mIF pipeline may inform prognosis and treatment selection for patients with PDAC. SIGNIFICANCE: A high-throughput pipeline using multiplex immunofluorescence in pancreatic cancer reveals striking expression subtype intratumoral heterogeneity with implications for therapy selection and identifies co-expressor cells that may serve as intermediates during subtype switching.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Prognosis , Phenotype , RNA , Gene Expression Regulation, Neoplastic , Claudins
3.
Drugs Today (Barc) ; 58(11): 523-530, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36422513

ABSTRACT

Tyrosine kinase inhibitors (TKIs) have provided great benefit for patients with EGFR-mutant non-small cell lung cancer (NSCLC). While prior TKIs have demonstrated limited efficacy against exon 20 insertion mutations of EGFR (EGFR Ex20Ins), mobocertinib (TAK-788) is designed to specifically inhibit these Ex20Ins mutations. In a phase I/II clinical trial, mobocertinib demonstrated meaningful benefits among a cohort of platinum-pretreated patients with EGFR Ex20Ins mutant NSCLC. For this cohort, the objective response rate was 28% (95% confidence interval [CI], 20%-37%). The median progression-free survival and duration of response were 7.3 months (95% CI, 5.5-9.2) and 17.5 months (95% CI, 7.4-20.3), respectively, both by independent review committee assessment. On the basis of these results, mobocertinib was granted accelerated approval as the first TKI for treatment of this indication by the U.S. Food and Drug Administration (FDA) in 2021. This review summarizes the preclinical development of mobocertinib and the early-phase clinical data leading to its approval and discusses potential directions for mobocertinib's development.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/therapeutic use , United States
4.
Cancer Discov ; 12(9): 2180-2197, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35771492

ABSTRACT

Pancreatic ductal adenocarcinomas (PDAC) depend on autophagy for survival; however, the metabolic substrates that autophagy provides to drive PDAC progression are unclear. Ferritin, the cellular iron storage complex, is targeted for lysosomal degradation (ferritinophagy) by the selective autophagy adaptor NCOA4, resulting in release of iron for cellular utilization. Using patient-derived and murine models of PDAC, we demonstrate that ferritinophagy is upregulated in PDAC to sustain iron availability, thereby promoting tumor progression. Quantitative proteomics reveals that ferritinophagy fuels iron-sulfur cluster protein synthesis to support mitochondrial homeostasis. Targeting NCOA4 leads to tumor growth delay and prolonged survival but with the development of compensatory iron acquisition pathways. Finally, enhanced ferritinophagy accelerates PDAC tumorigenesis, and an elevated ferritinophagy expression signature predicts for poor prognosis in patients with PDAC. Together, our data reveal that the maintenance of iron homeostasis is a critical function of PDAC autophagy, and we define NCOA4-mediated ferritinophagy as a therapeutic target in PDAC. SIGNIFICANCE: Autophagy and iron metabolism are metabolic dependencies in PDAC. However, targeted therapies for these pathways are lacking. We identify NCOA4-mediated selective autophagy of ferritin ("ferritinophagy") as upregulated in PDAC. Ferritinophagy supports PDAC iron metabolism and thereby tumor progression and represents a new therapeutic target in PDAC. See related commentary by Jain and Amaravadi, p. 2023. See related article by Ravichandran et al., p. 2198. This article is highlighted in the In This Issue feature, p. 2007.


Subject(s)
Carcinoma, Pancreatic Ductal , Iron-Sulfur Proteins , Pancreatic Neoplasms , Animals , Autophagy/drug effects , Autophagy/genetics , Biological Availability , Carcinoma, Pancreatic Ductal/genetics , Ferritins/genetics , Ferritins/metabolism , Humans , Iron/metabolism , Iron/pharmacology , Iron-Sulfur Proteins/metabolism , Mice , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/metabolism , Pancreatic Neoplasms/genetics , Sulfur/metabolism , Transcription Factors/metabolism , Pancreatic Neoplasms
5.
Cell ; 184(25): 6119-6137.e26, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34890551

ABSTRACT

Prognostically relevant RNA expression states exist in pancreatic ductal adenocarcinoma (PDAC), but our understanding of their drivers, stability, and relationship to therapeutic response is limited. To examine these attributes systematically, we profiled metastatic biopsies and matched organoid models at single-cell resolution. In vivo, we identify a new intermediate PDAC transcriptional cell state and uncover distinct site- and state-specific tumor microenvironments (TMEs). Benchmarking models against this reference map, we reveal strong culture-specific biases in cancer cell transcriptional state representation driven by altered TME signals. We restore expression state heterogeneity by adding back in vivo-relevant factors and show plasticity in culture models. Further, we prove that non-genetic modulation of cell state can strongly influence drug responses, uncovering state-specific vulnerabilities. This work provides a broadly applicable framework for aligning cell states across in vivo and ex vivo settings, identifying drivers of transcriptional plasticity and manipulating cell state to target associated vulnerabilities.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Tumor Microenvironment , Adult , Aged , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Single-Cell Analysis
6.
N Engl J Med ; 384(25): 2382-2393, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34161704

ABSTRACT

BACKGROUND: Clinical trials of the KRAS inhibitors adagrasib and sotorasib have shown promising activity in cancers harboring KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRASG12C). The mechanisms of acquired resistance to these therapies are currently unknown. METHODS: Among patients with KRASG12C -mutant cancers treated with adagrasib monotherapy, we performed genomic and histologic analyses that compared pretreatment samples with those obtained after the development of resistance. Cell-based experiments were conducted to study mutations that confer resistance to KRASG12C inhibitors. RESULTS: A total of 38 patients were included in this study: 27 with non-small-cell lung cancer, 10 with colorectal cancer, and 1 with appendiceal cancer. Putative mechanisms of resistance to adagrasib were detected in 17 patients (45% of the cohort), of whom 7 (18% of the cohort) had multiple coincident mechanisms. Acquired KRAS alterations included G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and high-level amplification of the KRASG12C allele. Acquired bypass mechanisms of resistance included MET amplification; activating mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN. In two of nine patients with lung adenocarcinoma for whom paired tissue-biopsy samples were available, histologic transformation to squamous-cell carcinoma was observed without identification of any other resistance mechanisms. Using an in vitro deep mutational scanning screen, we systematically defined the landscape of KRAS mutations that confer resistance to KRASG12C inhibitors. CONCLUSIONS: Diverse genomic and histologic mechanisms impart resistance to covalent KRASG12C inhibitors, and new therapeutic strategies are required to delay and overcome this drug resistance in patients with cancer. (Funded by Mirati Therapeutics and others; ClinicalTrials.gov number, NCT03785249.).


Subject(s)
Acetonitriles/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Mutation , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines/therapeutic use , Appendiceal Neoplasms/drug therapy , Appendiceal Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Colorectal Neoplasms/genetics , Humans , Lung Neoplasms/genetics , Protein Conformation , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/ultrastructure , Pyridines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...