Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 24(5): 746-758, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22563142

ABSTRACT

Liquid crystals have a long history of use as materials that respond to external stimuli (e.g., electrical and optical fields). More recently, a series of investigations have reported the design of liquid crystalline materials that undergo ordering transitions in response to a range of biological interactions, including interactions involving proteins, nucleic acids, viruses, bacteria and mammalian cells. A central challenge underlying the design of liquid crystalline materials for such applications is the tailoring of the interface of the materials so as to couple targeted biological interactions to ordering transitions. This review describes recent progress toward design of interfaces of liquid crystalline materials that are suitable for biological applications. Approaches addressed in this review include the use of lipid assemblies, polymeric membranes containing oligopeptides, cationic surfactant-DNA complexes, peptide-amphiphiles, interfacial protein assemblies and multi-layer polymeric films.

3.
ACS Appl Mater Interfaces ; 2(3): 722-31, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20356273

ABSTRACT

Surface-induced ordering of liquid crystals (LCs) offers the basis of a label-free analytical technique for the detection of surface-bound biomolecules. The orientation-dependent energy of interaction of a LC with a surface (anchoring energy of LC), in particular, is both sensitive to the presence of surface-bound molecules and easily quantified. Herein, we report a study that analyzes a simple model of twisted nematic LC systems and thereby identifies surfaces with LC anchoring energies in the range of 0.5 microJ/m(2) to 2.0 microJ/m(2) to be optimal for use with LC-based analytical methods. Guided by these predictions, we demonstrate that analytic surfaces possessing anchoring energies within this range can be fabricated with a high level of precision (< 0.1 microJ/m(2)) through formation of monolayers of organothiols (with omega-functional groups corresponding to oligoethyleneglycols and amines) on gold films deposited by physical vapor deposition at oblique angles of incidence. Finally, by using the human epidermal growth factor receptor (EGFR) as a model protein analyte, we have characterized the influence of the anchoring energies of the surfaces on the response of the LC to the presence of surface-bound EGFR. These results, when combined with (32)P-radiolabeling of the EGFR to independently quantify the surface concentration of EGFR, permit identification of surfaces that allow use of LCs to report surface densities of EGFR of 30-40 pg/mm(2). Overall, the results reported in this paper guide the design of surfaces for use in LC-based analytical systems.


Subject(s)
Biosensing Techniques/methods , Coated Materials, Biocompatible/chemistry , ErbB Receptors/analysis , ErbB Receptors/chemistry , Liquid Crystals/chemistry , Polymers/chemistry , Protein Array Analysis/methods , Materials Testing , Protein Binding , Surface Properties
4.
Lab Chip ; 8(8): 1357-64, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18651079

ABSTRACT

Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the transmembrane protein from the PDMS surface was found to be 75-81%. However, the transfer of non-specifically bound protein was substantially less than 75%, thus leading to the important finding that mechanical transfer of the EGF receptor leads to an approximately four-fold increase in signal-to-background from 20 : 1 to 88 : 1. The signal-to-background obtained following mechanical transfer is also better than that obtained using ELISA plates and stripping buffer (<48 : 1). The EGF receptor is a clinically important protein and the target of numerous anticancer agents and thus these results, when combined, provide guidance for the design of PDMS-based microanalytical systems for the capture and isolation of complex and clinically important transmembrane proteins.


Subject(s)
Biomedical Technology/methods , Dimethylpolysiloxanes/chemistry , ErbB Receptors/isolation & purification , ErbB Receptors/metabolism , Microfluidic Analytical Techniques/methods , Models, Biological , Antibodies/immunology , Enzyme-Linked Immunosorbent Assay , ErbB Receptors/immunology , Humans , Protein Binding , Surface Properties
5.
Anal Chem ; 80(8): 2637-45, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18355089

ABSTRACT

We report methods for the acquisition and analysis of optical images formed by thin films of twisted nematic liquid crystals (LCs) placed into contact with surfaces patterned with bio/chemical functionality relevant to surface-based assays. The methods are simple to implement and are shown to provide easily interpreted maps of chemical transformations on surfaces that are widely exploited in the preparation of analytic devices. The methods involve acquisition of multiple images of the LC as a function of the orientation of a polarizer; data analysis condenses the information present in the stack of images into a spatial map of the twist angle of the LC on the analytic surface. The potential utility of the methods is illustrated by mapping (i) the displacement of a monolayer formed from one alkanethiol on a gold film by a second thiol in solution, (ii) coadsorption of mixtures of amine-terminated and ethylene glycol-terminated alkanethiols on gold films, which leads to a type of mixed monolayer that is widely exploited for immobilization of proteins on analytic surfaces, and (iii) patterns of antibodies printed onto surfaces. These results show that maps of the twist angle of the LC constructed from families of optical images can be used to reveal surface features that are not apparent in a single image of the LC film. Furthermore, the twist angles of the LC can be used to quantify the energy of interaction of the LC with the surface with a spatial resolution of <10 microm. When combined, the results described in this paper suggest nondestructive methods to monitor and validate chemical transformations on surfaces of the type that are routinely employed in the preparation of surface-based analytic technologies.


Subject(s)
Chemistry Techniques, Analytical/methods , Liquid Crystals/chemistry , Alkanes/chemistry , Antibodies/chemistry , Biotin/chemistry , Gold/chemistry , Image Processing, Computer-Assisted , Immunoglobulin G/chemistry , Optics and Photonics , Serum Albumin, Bovine/chemistry , Sulfhydryl Compounds/chemistry , Surface Properties
6.
J Colloid Interface Sci ; 304(2): 459-73, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17022994

ABSTRACT

We report two methods that involve tailoring of the chemical composition of the nematic liquid crystal 4-cyano-4'-pentylbiphenyl to achieve control over the orientational ordering of the liquid crystal on chemically functionalized surfaces. The first method involves the direct addition of 4-cyano-4'-biphenylcarboxylic acid to 4-cyano-4'-pentylbiphenyl. The second method involves exposure of 4-cyano-4'-pentylbiphenyl to ultraviolet light and photochemical generation of a range of products, including 4-cyano-4'-biphenylcarboxylic acid. The addition of the acid or exposure to ultraviolet light accelerated the rate at which the liquid crystal exhibited an orientational transition from planar to perpendicular (homeotropic) alignment on surfaces presenting ammonium groups. The appearance of the homeotropic orientation of the UV-treated 4-cyano-4'-pentylbiphenyl on ammonium-terminated surfaces was dependent on the thickness of the film of liquid crystal (13-50 mum), consistent with a dipolar coupling between the liquid crystal and the electric field associated with an electrical double layer generated at the ammonium surface. Although the addition of 4-cyano-4'-biphenylcarboxylic acid or UV treatment of the liquid crystal also promoted homeotropic orientations on surfaces presenting hydroxyl groups, the orientations of the UV-treated liquid crystal on the hydroxyl-terminated surface did not change with thickness of the film of liquid crystal in the manner observed on the ammonium-terminated surfaces. The latter result indicates that the mechanism leading to homeotropic anchoring on hydroxyl-terminated surfaces is distinct from that on ammonium-terminated surfaces. Measurements performed using polarization modulation infrared reflection-absorption spectroscopy suggest that hydrogen bonding between the 4-cyano-4'-biphenylcarboxylic acid and the hydroxyl-terminated surface is responsible for the homeotropic anchoring on the surface. Finally, the orientation of the liquid crystal on methyl-terminated surfaces was not influenced by the addition of 4-cyano-4'-biphenylcarboxylic acid nor UV treatment. These results illustrate how the chemical composition of liquid crystals can be manipulated to achieve control over their ordering on surfaces that possess chemical functionality relevant to the development of liquid crystal-based sensors and diagnostic tools. We illustrate the utility of this approach by using the tailored liquid crystal to amplify and optically transduce the presence of proteins arrayed on ammonium-terminated surfaces.


Subject(s)
Biphenyl Compounds/chemistry , Liquid Crystals/chemistry , Hydrogen Bonding/radiation effects , Surface Properties , Ultraviolet Rays
7.
Org Lett ; 8(11): 2357-60, 2006 May 25.
Article in English | MEDLINE | ID: mdl-16706525

ABSTRACT

[reaction: see text] We report the development of a safety-catch photolabile linker that allows the light-directed synthesis and spatially selective photorelease of oligonucleotides from microarrays. The linker remains stable to light during DNA synthesis, and is activated for photorelease after acidic hydrolysis. We demonstrate that the photoreleased oligonucleotides can be amplified by PCR to produce double stranded DNA. The advantages offered by this linker could aid the development of an automated gene synthesis platform.


Subject(s)
DNA/chemical synthesis , Oligonucleotides/chemical synthesis , Photolysis , DNA/chemistry , Molecular Structure , Oligonucleotides/chemistry
8.
Nucleic Acids Res ; 32(17): 5011-8, 2004.
Article in English | MEDLINE | ID: mdl-15448182

ABSTRACT

A basic problem in gene synthesis is the acquisition of many short oligonucleotide sequences needed for the assembly of genes. Photolithographic methods for the massively parallel synthesis of high-density oligonucleotide arrays provides a potential source, once appropriate methods have been devised for their elution in forms suitable for enzyme-catalyzed assembly. Here, we describe a method based on the photolithographic synthesis of long (>60mers) single-stranded oligonucleotides, using a modified maskless array synthesizer. Once the covalent bond between the DNA and the glass surface is cleaved, the full-length oligonucleotides are selected and amplified using PCR. After cleavage of flanking primer sites, a population of unique, internal 40mer dsDNA sequences are released and are ready for use in biological applications. Subsequent gene assembly experiments using this DNA pool were performed and were successful in creating longer DNA fragments. This is the first report demonstrating the use of eluted chip oligonucleotides in biological applications such as PCR and assembly PCR.


Subject(s)
Genes , Oligodeoxyribonucleotides/biosynthesis , Oligonucleotide Array Sequence Analysis/methods , Polymerase Chain Reaction , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...