Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 9(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576871

ABSTRACT

Telomeres play important roles in safeguarding the genome. The specialized repressive chromatin that assembles at telomeres and subtelomeric domains is key to this protective role. However, in many organisms, the repetitive nature of telomeric and subtelomeric sequences has hindered research efforts. The fission yeast S. pombe has provided an important model system for dissection of chromatin biology due to the relative ease of genetic manipulation and strong conservation of important regulatory proteins with higher eukaryotes. Telomeres and the telomere-binding shelterin complex are highly conserved with mammals, as is the assembly of constitutive heterochromatin at subtelomeres. In this review, we seek to summarize recent work detailing the assembly of distinct chromatin structures within subtelomeric domains in fission yeast. These include the heterochromatic SH subtelomeric domains, the telomere-associated sequences (TAS), and ST chromatin domains that assemble highly condensed chromatin clusters called knobs. Specifically, we review new insights into the sequence of subtelomeric domains, the distinct types of chromatin that assemble on these sequences and how histone H3 K36 modifications influence these chromatin structures. We address the interplay between the subdomains of chromatin structure and how subtelomeric chromatin is influenced by both the telomere-bound shelterin complexes and by euchromatic chromatin regulators internal to the subtelomeric domain. Finally, we demonstrate that telomere clustering, which is mediated via the condensed ST chromatin knob domains, does not depend on knob assembly within these domains but on Set2, which mediates H3K36 methylation.

2.
Elife ; 102021 02 01.
Article in English | MEDLINE | ID: mdl-33522486

ABSTRACT

Sequencing of cancer genomes has identified recurrent somatic mutations in histones, termed oncohistones, which are frequently poorly understood. Previously we showed that fission yeast expressing only the H3.3G34R mutant identified in aggressive pediatric glioma had reduced H3K36 trimethylation and acetylation, increased genomic instability and replicative stress, and defective homology-dependent DNA damage repair. Here we show that surprisingly distinct phenotypes result from G34V (also in glioma) and G34W (giant cell tumors of bone) mutations, differentially affecting H3K36 modifications, subtelomeric silencing, genomic stability; sensitivity to irradiation, alkylating agents, and hydroxyurea; and influencing DNA repair. In cancer, only 1 of 30 alleles encoding H3 is mutated. Whilst co-expression of wild-type H3 rescues most G34 mutant phenotypes, G34R causes dominant hydroxyurea sensitivity, homologous recombination defects, and dominant subtelomeric silencing. Together, these studies demonstrate the complexity associated with different substitutions at even a single residue in H3 and highlight the utility of genetically tractable systems for their analysis.


Subject(s)
Histones/metabolism , Homologous Recombination , Mutant Proteins/metabolism , Schizosaccharomyces/metabolism , DNA Repair , DNA Replication , Genomic Instability , Histones/genetics , Mutant Proteins/genetics , Schizosaccharomyces/genetics
3.
Cancers (Basel) ; 11(5)2019 May 13.
Article in English | MEDLINE | ID: mdl-31086012

ABSTRACT

In this review, we describe the attributes of histone H3 mutants identified in cancer. H3 mutants were first identified in genes encoding H3.3, in pediatric high-grade glioma, and subsequently in chondrosarcomas and giant cell tumors of bone (GCTB) in adolescents. The most heavily studied are the lysine to methionine mutants K27M and K36M, which perturb the target site for specific lysine methyltransferases and dominantly perturb methylation of corresponding lysines in other histone H3 proteins. We discuss recent progress in defining the consequences of these mutations on chromatin, including a newly emerging view of the central importance of the disruption of H3K36 modification in many distinct K to M histone mutant cancers. We also review new work exploring the role of H3.3 G34 mutants identified in pediatric glioma and GCTB. G34 is not itself post-translationally modified, but G34 mutation impinges on the modification of H3K36. Here, we ask if G34R mutation generates a new site for methylation on the histone tail. Finally, we consider evidence indicating that histone mutations might be more widespread in cancer than previously thought, and if the perceived bias towards mutation of H3.3 is real or reflects the biology of tumors in which the histone mutants were first identified.

4.
Elife ; 62017 07 18.
Article in English | MEDLINE | ID: mdl-28718400

ABSTRACT

Recurrent somatic mutations of H3F3A in aggressive pediatric high-grade gliomas generate K27M or G34R/V mutant histone H3.3. H3.3-G34R/V mutants are common in tumors with mutations in p53 and ATRX, an H3.3-specific chromatin remodeler. To gain insight into the role of H3-G34R, we generated fission yeast that express only the mutant histone H3. H3-G34R specifically reduces H3K36 tri-methylation and H3K36 acetylation, and mutants show partial transcriptional overlap with set2 deletions. H3-G34R mutants exhibit genomic instability and increased replication stress, including slowed replication fork restart, although DNA replication checkpoints are functional. H3-G34R mutants are defective for DNA damage repair by homologous recombination (HR), and have altered HR protein dynamics in both damaged and untreated cells. These data suggest H3-G34R slows resolution of HR-mediated repair and that unresolved replication intermediates impair chromosome segregation. This analysis of H3-G34R mutant fission yeast provides mechanistic insight into how G34R mutation may promote genomic instability in glioma.


Subject(s)
DNA Replication , Genomic Instability , Histones/metabolism , Homologous Recombination , Mutant Proteins/metabolism , Schizosaccharomyces/metabolism , DNA Repair , Histones/genetics , Mutant Proteins/genetics , Mutation, Missense , Schizosaccharomyces/genetics
5.
Mol Cell ; 62(2): 207-221, 2016 04 21.
Article in English | MEDLINE | ID: mdl-27105116

ABSTRACT

Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development, and diseases. Methyl-CpG binding domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through cooperation with HP1 proteins. How remodeler and histone deacetylase (HDAC) cooperate within NuRD complexes remains unresolved. We determined that in SHREC the two modules occupy distant sites on the scaffold protein Clr1 and that repressive activity of SHREC can be modulated by the expression level of the HDAC-associated Clr1 domain alone. Moreover, the crystal structure of Clr2 reveals an MBD-like domain mediating recruitment of the HDAC module to heterochromatin. Thus, SHREC bi-functionality is organized in two separate modules with separate recruitment mechanisms, which work together to elicit transcriptional silencing at heterochromatic loci.


Subject(s)
Chromatin Assembly and Disassembly , Gene Silencing , Heterochromatin/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Protein Processing, Post-Translational , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Acetylation , Binding Sites , CpG Islands , DNA, Fungal/metabolism , Gene Expression Regulation, Fungal , Heterochromatin/chemistry , Heterochromatin/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Models, Molecular , Nucleosomes/enzymology , Nucleosomes/genetics , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , RNA, Fungal/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Structure-Activity Relationship , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
6.
J Mol Biol ; 427(9): 1779-1796, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25724843

ABSTRACT

The DEAD-box RNA helicase DDX3X is frequently mutated in pediatric medulloblastoma. We dissect how these mutants affect DDX3X function with structural, biochemical, and genetic experiments. We identify an N-terminal extension ("ATP-binding loop", ABL) that is critical for the stimulation of ATP hydrolysis by RNA. We present crystal structures suggesting that the ABL interacts dynamically with ATP and confirming that the interaction occurs in solution by NMR chemical shift perturbation and isothermal titration calorimetry. DEAD-box helicases require interaction between two conserved RecA-like helicase domains, D1 and D2 for function. We use NMR chemical shift perturbation to show that DDX3X interacts specifically with double-stranded RNA through its D1 domain, with contact mediated by residues G302 and G325. Mutants of these residues, G302V and G325E, are associated with pediatric medulloblastoma. These mutants are defective in RNA-stimulated ATP hydrolysis. We show that DDX3X complements the growth defect in a ded1 temperature-sensitive strain of Schizosaccharomyces pombe, but the cancer-associated mutants G302V and G325E do not complement and exhibit protein expression defects. Taken together, our results suggest that impaired translation of important mRNA targets by mutant DDX3X represents a key step in the development of medulloblastoma.


Subject(s)
Adenosine Triphosphate/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Medulloblastoma/genetics , Mutation/genetics , RNA/genetics , Binding Sites , Cerebellar Neoplasms/genetics , Child , Crystallization , Crystallography, X-Ray , DEAD-box RNA Helicases/chemistry , Genetic Complementation Test , Humans , Hydrolysis , Models, Molecular , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Protein Biosynthesis , Protein Conformation , Schizosaccharomyces/growth & development , Schizosaccharomyces/metabolism
7.
Chromosoma ; 124(2): 177-89, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25773741

ABSTRACT

Brain tumors are the most common solid tumors in children. Pediatric high-grade glioma (HGG) accounts for ∼8-12 % of these brain tumors and is a devastating disease as 70-90 % of patients die within 2 years of diagnosis. The failure to advance therapy for these children over the last 30 years is largely due to limited knowledge of the molecular basis for these tumors and a lack of disease models. Recently, sequencing of tumor cells revealed that histone H3 is frequently mutated in pediatric HGG, with up to 78 % of diffuse intrinsic pontine gliomas (DIPGs) carrying K27M and 36 % of non-brainstem gliomas carrying either K27M or G34R/V mutations. Although mutations in many chromatin modifiers have been identified in cancer, this was the first demonstration that histone mutations may be drivers of disease. Subsequent studies have identified high-frequency mutation of histone H3 to K36M in chondroblastomas and to G34W/L in giant cell tumors of bone, which are diseases of adolescents and young adults. Interestingly, the G34 mutations, the K36M mutations, and the majority of K27M mutations occur in genes encoding the replacement histone H3.3. Here, we review the peculiar characteristics of histone H3.3 and use this information as a backdrop to highlight current thinking about how the identified mutations may contribute to disease development.


Subject(s)
Brain Stem Neoplasms/genetics , Carcinogenesis/genetics , Glioma/genetics , Histones/genetics , Mutation , Amino Acid Sequence , Animals , Brain Stem Neoplasms/diagnosis , Child , Glioma/diagnosis , Humans , Molecular Sequence Data , Nucleosomes/genetics , Nucleosomes/metabolism
8.
EMBO J ; 32(17): 2321-35, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23771057

ABSTRACT

Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4-mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4-mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi-deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly.


Subject(s)
Cell Cycle Proteins/metabolism , Heterochromatin/metabolism , Methyltransferases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Cell Cycle Proteins/genetics , Centromere/metabolism , Chromatin Assembly and Disassembly , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase , Histones/metabolism , Lysine/metabolism , Methyltransferases/genetics , Mutation , RNA Interference , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Substrate Specificity , Telomere/genetics , Telomere/metabolism
9.
Chromosome Res ; 20(5): 521-34, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22733402

ABSTRACT

Distinct regions of the eukaryotic genome are packaged into different types of chromatin, with euchromatin representing gene rich, transcriptionally active regions and heterochromatin more condensed and gene poor. The assembly and maintenance of heterochromatin is important for many aspects of genome control, including silencing of gene transcription, suppression of recombination, and to ensure proper chromosome segregation. The precise mechanisms underlying heterochromatin establishment and maintenance are still unclear, but much progress has been made towards understanding this process during the last few years, particularly from studies performed in fission yeast. In this review, we hope to provide a conceptual model of centromeric heterochromatin in fission yeast that integrates our current understanding of the competing forces of transcription, replication, and RNA decay that influence its assembly and propagation.


Subject(s)
Centromere/metabolism , Chromatin Assembly and Disassembly , Heterochromatin/metabolism , RNA Interference , Schizosaccharomyces/metabolism , Transcription, Genetic , Animals , Cell Cycle Proteins/metabolism , DNA Replication , Epigenesis, Genetic , Histones/metabolism , Mammals , Methylation , Multiprotein Complexes/metabolism , RNA Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...