Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Aquat Organ ; 135(2): 127-134, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31392965

ABSTRACT

Francisella halioticida is a marine bacterium originally described as the causative agent of mass mortality among giant abalone Haliotis gigantea. Recent field studies in Canada and Japan have suggested that this bacterium is also the cause of adductor muscle lesions and high mortality of Yesso scallops Patinopecten yessoensis, although a causal relationship has not been established. In the present study, the pathogenicity of F. halioticida in Yesso scallops was assessed in both Canada and Japan using bacteria isolated from diseased Yesso scallops in each respective country. Independent laboratory experiments revealed that scallops challenged with F. halioticida via bath exposure resulted in high mortality and histological lesions characterized by massive haemocyte infiltration. The presence of F. halioticida was confirmed using PCR, and F. halioticida was re-isolated from a portion of dead and surviving specimens. These results fulfill Koch's classic criteria for establishing disease causation and provide conclusive evidence that F. halioticida causes adductor muscle lesions and high mortality in Yesso scallops.


Subject(s)
Francisella , Pectinidae , Animals , Canada , Japan , Phylogeny
2.
Dis Aquat Organ ; 126(2): 143-153, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-29044044

ABSTRACT

Mikrocytos mackini is an intracellular parasite of oysters and causative agent of Denman Island disease in Pacific oysters Crassostrea gigas. Although M. mackini has been investigated for decades, its natural mode of transmission, mechanism for host entry, and environmental stability are largely unknown. We explored these biological characteristics of M. mackini using a recently described quantitative PCR (qPCR) assay. We detected M. mackini in the flow-through tank water of experimentally infected oysters and during disease remission in host tissues following 6 wk of elevated water temperature. Waterborne exposure of oysters to M. mackini further confirmed the potential for extracellular seawater transmission of this parasite and also identified host gill to have the highest early and continued prevalence for M. mackini DNA compared to stomach, mantle, labial palps, or adductor muscle samples. However, infections following waterborne challenge were slow to develop despite a substantial exposure (>106 M. mackini l-1 for 24 h), and further investigation demonstrated that M. mackini occurrence and infectivity severely declined following extracellular seawater incubation of more than 24 h. This study demonstrates a potential for using qPCR to monitor M. mackini in wild or farmed oyster populations during periods of disease remission or from environmental seawater samples. This work also suggests that gill tissues may provide a primary site for waterborne entry and possibly shedding of M. mackini in oysters. Further, although extracellular seawater transmission of M. mackini was possible, poor environmental stability and infection efficiency likely restricts the geographic transmission of M. mackini between oysters in natural environs and may help to explain localized areas of infection.


Subject(s)
Crassostrea/parasitology , Eukaryota/isolation & purification , Polymerase Chain Reaction/methods , Seawater/parasitology , Animals , Filtration , Host-Parasite Interactions
3.
Dis Aquat Organ ; 126(1): 83-87, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28930089

ABSTRACT

On rare occasions, small cream-coloured cysts have been observed in the heart and pericardial cavity of Pacific oysters Crassostrea gigas from British Columbia, Canada. Histopathology revealed the presence of large colonies of bacteria (up to 800 µm in diameter) causing significant host response and hypertrophy of the heart epithelium. The causative bacteria were characterized as follows: Gram-negative, coccoid to small rod-shaped, typically <1.5 µm in size, cell walls highly endowed with surface fimbriae and division via binary fission. Although these bacteria shared some morphological characteristics with the order Rickettsiales, they did not require an intracellular existence for multiplication. Unfortunately, a cultured isolate was not available, and a retrospective attempt to further characterize the bacteria using DNA sequence analysis of a fragment from the 16S rDNA region proved to be uninformative.


Subject(s)
Bacteria/classification , Heart/microbiology , Ostreidae/microbiology , Animals , Bacterial Physiological Phenomena , Host-Pathogen Interactions
4.
Dis Aquat Organ ; 125(1): 79-84, 2017 Jun 19.
Article in English | MEDLINE | ID: mdl-28627495

ABSTRACT

During the fall of 2015, up to 40% mortality occurred in juvenile Yesso scallops Patinopecten yessoensis at an aquaculture site in Baynes Sound, British Columbia, Canada. Macroscopic lesions were present in 11% of the scallops, and histopathology consisting of multifocal and diffuse haemocyte infiltration was observed in 44% of the specimens examined. Histologically, small Gram-negative intracellular bacteria-like particles were observed within necrotic haemocytes of the lesions, suggesting a bacterial aetiology. DNA was extracted from adductor muscle lesions of diseased scallops, and the 16s rDNA gene as well as the DNA-directed RNA polymerase beta subunit (rpoB) were amplified by PCR. Sequence analyses of the resulting 413 and 925 bp fragments were a 100% match to the reference sequence for Francisella halioticida, originally described as the cause of mortality in abalone from Japan. Isolation and culture of the bacteria was not possible at the time, as no further diseased specimens were available. Results from in situ hybridization assays as well as examination by transmission electron microscopy provide further evidence supporting the hypothesis that F. halioticida was the most probable causative agent of the lesions and mortality.


Subject(s)
Francisella/physiology , Pectinidae/microbiology , Animals , Host-Pathogen Interactions
5.
J Eukaryot Microbiol ; 51(3): 325-32, 2004.
Article in English | MEDLINE | ID: mdl-15218702

ABSTRACT

A "universal non-metazoan" polymerase chain reaction (UNonMet-PCR) that selectively amplifies a segment of nonmetazoan Small Subunit (SSU) rDNA gene was validated. The primers used were: 18S-EUK581-F (5'-GTGCCAGCAGCCGCG-3') and 18S-EUK1134-R (5'-TTTAAGTTTCAGCCTTGCG-3') with specificity provided by the 19-base reverse primer. Its target site is highly conserved across the Archaea, Bacteria, and eukaryotes (including fungi), but not most Metazoa (except Porifera, Ctenophora, and Myxozoa) which have mismatches at bases 14 and 19 resulting in poor or failed amplification. During validation, UNonMet-PCR amplified SSU rDNA gene fragments from all assayed protists (n = 16 from 7 higher taxa, including two species of marine phytoplankton) and Fungi (n = 3) but amplified very poorly or not at all most assayed Metazoa (n = 13 from 8 higher taxa). When a nonmetazoan parasite was present in a metazoan host, the parasite DNA was preferentially amplified. For example, DNA from the parasite Trypanosoma danilewskyi was preferentially amplified in mixtures containing up to 1,000 x more goldfish Carassius auratus (host) DNA. Also, the weak amplification of uninfected host (Chionoecetes tanneri) SSU rDNA did not occur in the presence of a natural infection with a parasite (Hematodinium sp.). Only Hematodinium sp. SSU rDNA was amplified in samples from infected C. tanneri. This UNonMet-PCR is a powerful tool for amplifying SSU rDNA from non-metazoan pathogens or symbionts that have not been isolated from metazoan hosts.


Subject(s)
DNA, Ribosomal/analysis , Eukaryota/classification , Animals , DNA Primers , Eukaryota/genetics , Eukaryotic Cells/classification , Polymerase Chain Reaction/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...