Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(3): e0280500, 2023.
Article in English | MEDLINE | ID: mdl-36928497

ABSTRACT

A growing body of evidence suggests that spatial population structure can develop in marine species despite large population sizes and high gene flow. Characterizing population structure is important for the effective management of exploited species, as it can be used to identify appropriate scales of management in fishery and aquaculture contexts. The California sea cucumber, Apostichopus californicus, is one such exploited species whose management could benefit from further characterization of population structure. Using restriction site-associated DNA (RAD) sequencing, we developed 2075 single nucleotide polymorphisms (SNPs) to quantify genetic structure over a broad section of the species' range along the North American west coast and within the Salish Sea, a region supporting the Washington State A. californicus fishery and developing aquaculture production of the species. We found evidence for population structure (global fixation index (FST) = 0.0068) with limited dispersal driving two patterns of differentiation: isolation-by-distance and a latitudinal gradient of differentiation. Notably, we found detectable population differences among collection sites within the Salish Sea (pairwise FST = 0.001-0.006). Using FST outlier detection and gene-environment association, we identified 10.2% of total SNPs as putatively adaptive. Environmental variables (e.g., temperature, salinity) from the sea surface were more correlated with genetic variation than those same variables measured near the benthos, suggesting that selection on pelagic larvae may drive adaptive differentiation to a greater degree than selection on adults. Our results were consistent with previous estimates of and patterns in population structure for this species in other extents of the range. Additionally, we found that patterns of neutral and adaptive differentiation co-varied, suggesting that adaptive barriers may limit dispersal. Our study provides guidance to decision-makers regarding the designation of management units for A. californicus and adds to the growing body of literature identifying genetic population differentiation in marine species despite large, nominally connected populations.


Subject(s)
Sea Cucumbers , Animals , Sea Cucumbers/genetics , Genetics, Population , Sequence Analysis, DNA , Gene Flow , Washington , Polymorphism, Single Nucleotide
2.
PeerJ ; 5: e3044, 2017.
Article in English | MEDLINE | ID: mdl-28265513

ABSTRACT

In the face of increasing threats to biodiversity, the advancement of methods for surveying biological communities is a major priority for ecologists. Recent advances in molecular biological technologies have made it possible to detect and sequence DNA from environmental samples (environmental DNA or eDNA); however, eDNA techniques have not yet seen widespread adoption as a routine method for biological surveillance primarily due to gaps in our understanding of the dynamics of eDNA in space and time. In order to identify the effective spatial scale of this approach in a dynamic marine environment, we collected marine surface water samples from transects ranging from the intertidal zone to four kilometers from shore. Using PCR primers that target a diverse assemblage of metazoans, we amplified a region of mitochondrial 16S rDNA from the samples and sequenced the products on an Illumina platform in order to detect communities and quantify their spatial patterns using a variety of statistical tools. We find evidence for multiple, discrete eDNA communities in this habitat, and show that these communities decrease in similarity as they become further apart. Offshore communities tend to be richer but less even than those inshore, though diversity was not spatially autocorrelated. Taxon-specific relative abundance coincided with our expectations of spatial distribution in taxa lacking a microscopic, pelagic life-history stage, though most of the taxa detected do not meet these criteria. Finally, we use carefully replicated laboratory procedures to show that laboratory treatments were remarkably similar in most cases, while allowing us to detect a faulty replicate, emphasizing the importance of replication to metabarcoding studies. While there is much work to be done before eDNA techniques can be confidently deployed as a standard method for ecological monitoring, this study serves as a first analysis of diversity at the fine spatial scales relevant to marine ecologists and confirms the promise of eDNA in dynamic environments.

3.
Ecol Appl ; 26(6): 1645-1659, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27755698

ABSTRACT

Environmental DNA (eDNA), genetic material recovered from an environmental medium such as soil, water, or feces, reflects the membership of the ecological community present in the sampled environment. As such, eDNA is a potentially rich source of data for basic ecology, conservation, and management, because it offers the prospect of quantitatively reconstructing whole ecological communities from easily obtained samples. However, like all sampling methods, eDNA sequencing is subject to methodological limitations that can generate biased descriptions of ecological communities. Here, we demonstrate parallels between eDNA sampling and traditional sampling techniques, and use these parallels to offer a statistical structure for framing the challenges faced by eDNA and for illuminating the gaps in our current knowledge. Although the current state of knowledge on some of these steps precludes a full estimate of biomass for each taxon in a sampled eDNA community, we provide a map that illustrates potential methods for bridging these gaps. Additionally, we use an original data set to estimate the relative abundances of taxon-specific template DNA prior to PCR, given the abundance of DNA sequences recovered post-PCR-and-sequencing, a critical step in the chain of eDNA inference. While we focus on the use of eDNA samples to determine the relative abundance of taxa within a community, our approach also applies to single-taxon applications (including applications using qPCR), studies of diversity, and studies focused on occurrence. By grounding inferences about eDNA community composition in a rigorous statistical framework, and by making these inferences explicit, we hope to improve the inferential potential for the emerging field of community-level eDNA analysis.


Subject(s)
DNA/genetics , Metagenomics , Models, Biological , Seawater , Animals , Biomass , Fishes , Invertebrates
4.
PeerJ ; 4: e2444, 2016.
Article in English | MEDLINE | ID: mdl-27672503

ABSTRACT

Despite decades of work in environmental science and ecology, estimating human influences on ecosystems remains challenging. This is partly due to complex chains of causation among ecosystem elements, exacerbated by the difficulty of collecting biological data at sufficient spatial, temporal, and taxonomic scales. Here, we demonstrate the utility of environmental DNA (eDNA) for quantifying associations between human land use and changes in an adjacent ecosystem. We analyze metazoan eDNA sequences from water sampled in nearshore marine eelgrass communities and assess the relationship between these ecological communities and the degree of urbanization in the surrounding watershed. Counter to conventional wisdom, we find strongly increasing richness and decreasing beta diversity with greater urbanization, and similar trends in the diversity of life histories with urbanization. We also find evidence that urbanization influences nearshore communities at local (hundreds of meters) rather than regional (tens of km) scales. Given that different survey methods sample different components of an ecosystem, we then discuss the advantages of eDNA-which we use here to detect hundreds of taxa simultaneously-as a complement to traditional ecological sampling, particularly in the context of broad ecological assessments where exhaustive manual sampling is impractical. Genetic data are a powerful means of uncovering human-ecosystem interactions that might otherwise remain hidden; nevertheless, no sampling method reveals the whole of a biological community.

5.
PLoS One ; 11(3): e0148698, 2016.
Article in English | MEDLINE | ID: mdl-26950069

ABSTRACT

Massively parallel sequencing is rapidly emerging as an efficient way to quantify biodiversity at all levels, from genetic variation and expression to ecological community assemblage. However, the number of reads produced per sequencing run far exceeds the number required per sample for many applications, compelling researchers to sequence multiple samples per run in order to maximize efficiency. For studies that include a PCR step, this can be accomplished using primers that include an index sequence allowing sample origin to be determined after sequencing. The use of indexed primers assumes they behave no differently than standard primers; however, we found that indexed primers cause substantial template sequence-specific bias, resulting in radically different profiles of the same environmental sample. Likely the outcome of differential amplification efficiency due to primer-template mismatch, two indexed primer sets spuriously change the inferred sequence abundance from the same DNA extraction by up to 77.1%. We demonstrate that a double PCR approach alleviates these effects in applications where indexed primers are necessary.


Subject(s)
DNA Primers/genetics , High-Throughput Nucleotide Sequencing/methods , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...