Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nature ; 409(6822): 804-8, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11236990

ABSTRACT

Understanding the relative timings of climate events in the Northern and Southern hemispheres is a prerequisite for determining the causes of abrupt climate changes. But climate records from the Patagonian Andes and New Zealand for the period of transition from glacial to interglacial conditions--about 14.6-10 kyr before present, as determined by radiocarbon dating--show varying degrees of correlation with similar records from the Northern Hemisphere. It is necessary to resolve these apparent discrepancies in order to be able to assess the relative roles of Northern Hemisphere ice sheets and oceanic, atmospheric and astronomical influences in initiating climate change in the late-glacial period. Here we report pollen records from three sites in the Lake District of southern Chile (41 degrees S) from which we infer conditions similar to modern climate between about 13 and 12.2 14C kyr before present (BP), followed by cooling events at about 12.2 and 11.4 14C kyr BP, and then by a warming at about 9.8 14C kyr BP. These events were nearly synchronous with important palaeoclimate changes recorded in the North Atlantic region, supporting the idea that interhemispheric linkage through the atmosphere was the primary control on climate during the last deglaciation. In other regions of the Southern Hemisphere, where climate events are not in phase with those in the Northern Hemisphere, local oceanic influences may have counteracted the effects that propagated through the atmosphere.


Subject(s)
Climate , Chile , Pollen , Time
2.
Proc Natl Acad Sci U S A ; 97(4): 1351-4, 2000 Feb 15.
Article in English | MEDLINE | ID: mdl-10677465

ABSTRACT

Understanding abrupt climate changes requires detailed spatial/temporal records of such changes, and to make these records, we need rapidly responding, geographically widespread climate trackers. Glacial systems are such trackers, and recent additions to the stratigraphic record show overall synchronous response of glacial systems to climate change reflecting global atmosphere conditions.

3.
Science ; 269(5230): 1541-9, 1995 Sep 15.
Article in English | MEDLINE | ID: mdl-17789444

ABSTRACT

A radiocarbon chronology shows that piedmont glacier lobes in the Chilean Andes achieved maxima during the last glaciation at 13,900 to 14,890, 21,000, 23,060, 26,940, 29,600, and >/=33,500 carbon-14 years before present ((14)C yr B.P.) in a cold and wet Subantarctic Parkland environment. The last glaciation ended with massive collapse of ice lobes close to 14,000(14)C yr B.P., accompanied by an influx of North Patagonian Rain Forest species. In the Southern Alps of New Zealand, additional glacial maxima are registered at 17,720(14)C yr B.P., and at the beginning of the Younger Dryas at 11,050 (14)C yr B. P. These glacial maxima in mid-latitude mountains rimming the South Pacific were coeval with ice-rafting pulses in the North Atlantic Ocean. Furthermore, the last termination began suddenly and simultaneously in both polar hemispheres before the resumption of the modern mode of deep-water production in the Nordic Seas. Such interhemispheric coupling implies a global atmospheric signal rather than regional climatic changes caused by North Atlantic thermohaline switches or Laurentide ice surges.

SELECTION OF CITATIONS
SEARCH DETAIL
...