Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 108(4-1): 044603, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978682

ABSTRACT

We study the collective vibrational excitations of crystals under out-of-equilibrium steady conditions that give rise to entropy production. Their excitation spectrum comprises equilibriumlike phonons of thermal origin and additional collective excitations called entropons because each of them represents a mode of spectral entropy production. Entropons coexist with phonons and dominate them when the system is far from equilibrium while they are negligible in near-equilibrium regimes. The concept of entropons has been recently introduced and verified in a special case of crystals formed by self-propelled particles. Here we show that entropons exist in a broader class of active crystals that are intrinsically out of equilibrium and characterized by the lack of detailed balance. After a general derivation, several explicit examples are discussed, including crystals consisting of particles with alignment interactions and frictional contact forces.

2.
Phys Rev Lett ; 130(14): 148202, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37084461

ABSTRACT

Within a simple model of attractive active Brownian particles, we predict flocking behavior and challenge the widespread idea that alignment interactions are necessary to observe this collective phenomenon. Here, we show that even nonaligning attractive interactions can lead to a flocking state. Monitoring the velocity polarization as the order parameter, we reveal the onset of a first-order transition from a disordered phase, characterized by several small clusters, to a flocking phase, where a single flocking cluster is emerging. The scenario is confirmed by studying the spatial connected correlation function of particle velocities, which reveals scale-free behavior in flocking states and exponential-like decay for nonflocking configurations. Our predictions can be tested in microscopic and macroscopic experiments showing flocking, such as animals, migrating cells, and active colloids.

3.
J Chem Phys ; 158(10): 101101, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36922145

ABSTRACT

The probability per unit time for a thermally activated Brownian particle to escape over a potential well is, in general, well-described by Kramers's theory. Kramers showed that the escape time decreases exponentially with increasing barrier height. The dynamics slow down when the particle is charged and subjected to a Lorentz force due to an external magnetic field. This is evident via a rescaling of the diffusion coefficient entering as a prefactor in the Kramers's escape rate without any impact on the barrier-height-dependent exponent. Here, we show that the barrier height can be effectively changed when the charged particle is subjected to a vortex flow. While the vortex alone does not affect the mean escape time of the particle, when combined with a magnetic field, it effectively pushes the fluctuating particle either radially outside or inside depending on its sign relative to that of the magnetic field. In particular, the effective potential over which the particle escapes can be changed to a flat, a stable, and an unstable potential by tuning the signs and magnitudes of the vortex and the applied magnetic field. Notably, the last case corresponds to enhanced escape dynamics.

4.
Phys Rev E ; 103(5-1): 052602, 2021 May.
Article in English | MEDLINE | ID: mdl-34134234

ABSTRACT

We study a Langevin equation describing the stochastic motion of a particle in one dimension with coordinate x, which is simultaneously exposed to a space-dependent friction coefficient γ(x), a confining potential U(x) and nonequilibrium (i.e., active) noise. Specifically, we consider frictions γ(x)=γ_{0}+γ_{1}|x|^{p} and potentials U(x)∝|x|^{n} with exponents p=1,2 and n=0,1,2. We provide analytical and numerical results for the particle dynamics for short times and the stationary probability density functions (PDFs) for long times. The short-time behavior displays diffusive and ballistic regimes while the stationary PDFs display unique characteristic features depending on the exponent values (p,n). The PDFs interpolate between Laplacian, Gaussian, and bimodal distributions, whereby a change between these different behaviors can be achieved by a tuning of the friction strengths ratio γ_{0}/γ_{1}. Our model is relevant for molecular motors moving on a one-dimensional track and can also be realized for confined self-propelled colloidal particles.

5.
Phys Rev E ; 102(4-1): 043204, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212619

ABSTRACT

Laboratory realizations of two-dimensional (2D) plasma crystals typically involve monodisperse microparticles confined into horizontal monolayers in radio-frequency (rf) plasma sheaths. This gives rise to the so-called plasma wakes beneath the microparticles. The presence of wakes renders the interactions in such systems nonreciprocal, a fact that can lead to a quite different behavior from the one expected for their reciprocal counterparts. Here we examine the buckling of a hexagonal 2D plasma crystal, occurring as the confinement strength is decreased, taking explicitly into account the nonreciprocity of the system via a well-established point-wake model. We observe that for a finite wake charge, the monolayer hexagonal crystal undergoes a transition first to a bilayer hexagonal structure, unrealizable in harmonically confined reciprocal Yukawa systems, and subsequently to a bilayer square structure. Our theoretical results are confirmed by molecular dynamics simulations for experimentally relevant parameters, indicating the potential of their observation in state-of-the-art experiments with 2D complex plasmas.

6.
J Phys Condens Matter ; 30(32): 325101, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29974867

ABSTRACT

We investigate the structural properties of colloidal particle systems interacting via an isotropic pair potential and confined by a three-dimensional harmonic potential. The interaction potential has a repulsive-attractive-repulsive profile that varies with the interparticle distance (also known as a 'mermaid' potential). We performed Langevin dynamics simulations to find the equilibrium configurations of the system. We show that particles can self-assemble in complex structural patterns, such as compact disks, fringed disks, rods, spherical clusters with superficial entrances among others. Also, for particular values of the parameters of the interaction potential, we could identify that some configurations were formed by quasi two-dimensional (2D) structures which are stable for 2D systems.

7.
J Phys Condens Matter ; 30(7): 074001, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29271364

ABSTRACT

We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.

8.
J Phys Condens Matter ; 29(27): 275102, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28513473

ABSTRACT

Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a 'pairwise pseudopotential'. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an 'external pseudopotential' when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.

9.
Phys Rev Lett ; 119(12): 128001, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29341657

ABSTRACT

At the triple point of a repulsive screened Coulomb system, a fcc crystal, a bcc crystal, and a fluid phase coexist. At their intersection, these three phases form a liquid groove, the triple junction. Using confocal microscopy, we resolve the triple junction on a single-particle level in a model system of charged PMMA colloids in a nonpolar solvent. The groove is found to be extremely deep and the incommensurate solid-solid interface to be very broad. Thermal fluctuations hence appear to dominate the solid-solid interface. This indicates a very low interfacial energy. The fcc-bcc interfacial energy is quantitatively determined based on Young's equation and, indeed, it is only about 1.3 times higher than the fcc-fluid interfacial energy close to the triple point.

10.
Phys Rev E ; 96(1-1): 012602, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29347123

ABSTRACT

We explore the growth of two-dimensional quasicrystals, i.e., aperiodic structures that possess long-range order, from two seeds at various distances and with different orientations by using dynamical phase-field crystal calculations. We compare the results to the growth of periodic crystals from two seeds. There, a domain border consisting of dislocations is observed in case of large distances between the seed and large angles between their orientation. Furthermore, a domain border is found if the seeds are placed at a distance that does not fit to the periodic lattice. In the case of the growth of quasicrystals, we only observe domain borders for large distances and different orientations. Note that all distances do inherently not match to a perfect domain wall-free quasicrystalline structure. Nevertheless, we find dislocation-free growth for all seeds at a small enough distance and for all seeds that approximately have the same orientation. In periodic structures, the stress that occurs due to incommensurate distances between the seeds results in phononic strain fields or, in the case of too large stresses, in dislocations. In contrast, in quasicrystals an additional phasonic strain field can occur and suppress dislocations. Phasons are additional degrees of freedom that are unique to quasicrystals. As a consequence, the additional phasonic strain field helps to distribute the stress and facilitates the growth of dislocation-free quasicrystals from multiple seeds. In contrast, in the periodic case the growth from multiple seeds most likely leads to a structure with multiple domains. Our work lays the theoretical foundations for growing perfect quasicrystals from different seeds and is therefore relevant for many applications.

11.
Phys Chem Chem Phys ; 18(18): 12860-76, 2016 05 14.
Article in English | MEDLINE | ID: mdl-27104814

ABSTRACT

To gain insight into the fundamental processes determining the motion of macromolecules in polymeric matrices, the dynamical hindrance of polymeric dextran molecules diffusing as probe through a polyacrylamide hydrogel is systematically explored. Three complementary experimental methods combined with Brownian dynamics simulations are used to study a broad range of dextran molecular weights and salt concentrations. While multi-parameter fluorescence image spectroscopy (MFIS) is applied to investigate the local diffusion of single molecules on a microscopic length scale inside the hydrogel, a macroscopic transmission imaging (MTI) fluorescence technique and nuclear magnetic resonance (NMR) are used to study the collective motion of dextrans on the macroscopic scale. These fundamentally different experimental methods, probing different length scales of the system, yield long-time diffusion coefficients for the dextran molecules which agree quantitatively. The measured diffusion coefficients decay markedly with increasing molecular weight of the dextran and fall onto a master curve. The observed trends of the hindrance factors are consistent with Brownian dynamics simulations. The simulations also allow us to estimate the mean pore size for the herein investigated experimental conditions. In addition to the diffusing molecules, MFIS detects temporarily trapped molecules inside the matrix with diffusion times above 10 ms, which is also confirmed by anisotropy analysis. The fraction of bound molecules depends on the ionic strength of the solution and the charge of the dye. Using fluorescence intensity analysis, also MTI confirms the observation of the interaction of dextrans with the hydrogel. Moreover, pixelwise analysis permits to show significant heterogeneity of the gel on the microscopic scale.

12.
Nat Commun ; 6: 7110, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25975451

ABSTRACT

Crystallization represents the prime example of a disorder-order transition. In realistic situations, however, container walls and impurities are frequently present and hence crystallization is heterogeneously seeded. Rarely the seeds are perfectly compatible with the thermodynamically favoured crystal structure and thus induce elastic distortions, which impede further crystal growth. Here we use a colloidal model system, which not only allows us to quantitatively control the induced distortions but also to visualize and follow heterogeneous crystallization with single-particle resolution. We determine the sequence of intermediate structures by confocal microscopy and computer simulations, and develop a theoretical model that describes our findings. The crystallite first grows on the seed but then, on reaching a critical size, detaches from the seed. The detached and relaxed crystallite continues to grow, except close to the seed, which now prevents crystallization. Hence, crystallization seeds facilitate crystallization only during initial growth and then act as impurities.

13.
J Chem Phys ; 141(4): 044903, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25084952

ABSTRACT

The equilibrium structure and dynamics of a single polymer chain in a thermal solvent is by now well-understood in terms of scaling laws. Here, we consider a polymer in a bacterial bath, i.e., in a solvent consisting of active particles which bring in nonequilibrium fluctuations. Using computer simulations of a self-avoiding polymer chain in two dimensions which is exposed to a dilute bath of active particles, we show that the Flory-scaling exponent is unaffected by the bath activity provided the chain is very long. Conversely, for shorter chains, there is a nontrivial coupling between the bacteria intruding into the chain which may stiffen and expand the chain in a nonuniversal way. As a function of the molecular weight, the swelling first scales faster than described by the Flory exponent, then an unusual plateau-like behaviour is reached and finally a crossover to the universal Flory behaviour is observed. As a function of bacterial activity, the chain end-to-end distance exhibits a pronounced non-monotonicity. Moreover, the mean-square displacement of the center of mass of the chain shows a ballistic behaviour at intermediate times as induced by the active solvent. Our predictions are verifiable in two-dimensional bacterial suspensions and for colloidal model chains exposed to artificial colloidal microswimmers.

14.
Phys Rev Lett ; 113(2): 029802, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062249
15.
Phys Rev Lett ; 112(25): 255501, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-25014822

ABSTRACT

The growth of quasicrystals, i.e., aperiodic structures with long-range order, seeded from the melt is investigated using a dynamical phase field crystal model. Depending on the thermodynamic conditions, two different growth modes are detected, namely defect-free growth of the stable quasicrystal and a mode dominated by phasonic flips which are incorporated as local defects into the grown structure such that random tilinglike ordering emerges. The latter growth mode is unique to quasicrystals and can be verified in experiments on one-component mesoscopic systems.

16.
J Chem Phys ; 140(12): 124904, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24697478

ABSTRACT

The ionic composition and pair correlations in fluid phases of realistically salt-free charged colloidal sphere suspensions are calculated in the primitive model. We obtain the number densities of all ionic species in suspension, including low-molecular weight microions, and colloidal macroions with acidic surface groups, from a self-consistent solution of a coupled physicochemical set of nonlinear algebraic equations and non-mean-field liquid integral equations. Here, we study suspensions of colloidal spheres with sulfonate or silanol surface groups, suspended in demineralized water that is saturated with carbon dioxide under standard atmosphere. The only input required for our theoretical scheme are the acidic dissociation constants pKa, and effective sphere diameters of all involved ions. Our method allows for an ab initio calculation of colloidal bare and effective charges, at high numerical efficiency.

17.
Article in English | MEDLINE | ID: mdl-24580344

ABSTRACT

We consider two-dimensional Yukawa systems in a perpendicular magnetic field. Computer simulations of both one-component and binary systems are used to explore the equilibrium particle dynamics in the fluid state. The mobility is found to scale with the inverse of the magnetic field strength (Bohm diffusion), for strong fields (ωc/ωp≳1). For bidisperse mixtures, the magnetic field dependence of the long-time mobility depends on the particle species, providing an external control of their mobility ratio. At large magnetic fields, the highly charged particles are almost immobilized by the magnetic field and form a porous matrix of obstacles for the mobile low-charge particles.

18.
Article in English | MEDLINE | ID: mdl-24229178

ABSTRACT

The structure of colloids with competing interactions which are confined in a harmonic external trap potential is analyzed numerically by energy minimization in two spatial dimensions. A wealth of different cluster structures is found to be stable including clusters with a fringed outer rim (reminiscent to an ornamental border), clusters perforated with voids, as well as clusters with a crystalline core and a disordered rim. All cluster structures occur in a two-dimensional parameter space. The structural ordering can therefore be efficiently tuned by changing few parameters only providing access to a controlled fabrication of colloidal clusters.

19.
Article in English | MEDLINE | ID: mdl-24032837

ABSTRACT

Catching fish with a fishing net is typically done either by dragging a fishing net through quiescent water or by placing a stationary basket trap into a stream. We transfer these general concepts to micron-sized self-motile particles moving in a solvent at low Reynolds number and study their collective trapping behavior by means of computer simulations of a two-dimensional system of self-propelled rods. A chevron-shaped obstacle is dragged through the active suspension with a constant speed v and acts as a trapping "net." Three trapping states can be identified corresponding to no trapping, partial trapping, and complete trapping and their relative stability is studied as a function of the apex angle of the wedge, the swimmer density, and the drag speed v. When the net is dragged along the inner wedge, complete trapping is facilitated and a partially trapped state changes into a complete trapping state if the drag speed exceeds a certain value. Reversing the drag direction leads to a reentrant transition from no trapping to complete trapping and then back to no trapping upon increasing the drag speed along the outer wedge contour. The transition to complete trapping is marked by a templated self-assembly of rods forming polar smectic structures anchored onto the inner contour of the wedge. Our predictions can be verified in experiments of artificial or microbial swimmers confined in microfluidic trapping devices.

20.
Phys Rev Lett ; 111(6): 065001, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23971579

ABSTRACT

Crystallization in a two-dimensional strongly coupled plasma from a rapidly cooled fluid is found to be efficiently blocked by an external magnetic field. Beyond a threshold of the magnetic field strength B, the relaxation time to the equilibrium crystal increases exponentially with B, which is attributed to an impeded conversion of potential to kinetic energy. Our finding is opposed to the standard picture of two-dimensional freezing of one-component systems which does not exhibit a nucleation barrier and opens the way to keep two-dimensional fluids metastable over long times.

SELECTION OF CITATIONS
SEARCH DETAIL
...