Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 13: 848681, 2022.
Article in English | MEDLINE | ID: mdl-35492608

ABSTRACT

Endothelial dysfunction is a key feature of cardiovascular disease (CVD) including atherosclerosis. Impaired endothelial signaling leads to plaque formation, vascular wall remodeling and widespread cardiovascular dysregulation. The specific changes along the vascular intima associated with atherosclerosis, including the vulnerable circulation downstream of the flow obstruction, remain poorly understood. Previous findings from animal models suggest that preservation of a distinct Ca2+ signaling profile along the arterial endothelial network is crucial for maintaining vasculature homeostasis and preventing arterial disease. Ca2+ signaling in the intact human artery intima has not been well characterized. Here, we employed confocal imaging and a custom analysis algorithm to assess the spatially and temporally dynamic Ca2+ signaling profiles of human peripheral arteries isolated from the amputated legs of patients with advanced CVD (peripheral artery disease and/or diabetes) or patients who had lost limbs due to non-cardiovascular trauma. In all tibial artery branches (0.5-5 mm diameter) assessed, the intima consistently elicited a broad range of basal Ca2+ signals ranging from isolated focal transients to broad waves. Arteries from patients with existing CVD displayed a restricted intimal Ca2+ signaling pattern characterized by diminished event amplitude and area. Stimulation of type-4 vanilloid transient receptor potential channels (TRPV4) amplified endothelial Ca2+ signals; however, these signals remained smaller and spatially confined in arteries from patients with CVD verses those without CVD. Our findings reveal a characteristic underlying basal Ca2+ signaling pattern within the intima of human peripheral arteries and suggest a distinct truncation of the inherent Ca2+ profile with CVD.

2.
J Virol ; 91(1)2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27795421

ABSTRACT

CD8+ T cells are crucial components of immunity and play a vital role in recovery from West Nile virus (WNV) infection. Here, we identify a previously unrecognized function of interleukin-17A (IL-17A) in inducing cytotoxic-mediator gene expression and promoting CD8+ T cell cytotoxicity against WNV infection in mice. We find that IL-17A-deficient (Il17a-/-) mice are more susceptible to WNV infection and develop a higher viral burden than wild-type (WT) mice. Interestingly, the CD8+ T cells isolated from Il17a-/- mice are less cytotoxic and express lower levels of cytotoxic-mediator genes, which can be restored by supplying recombinant IL-17A in vitro and in vivo Importantly, treatment of WNV-infected mice with recombinant IL-17A, as late as day 6 postinfection, significantly reduces the viral burden and increases survival, suggesting a therapeutic potential for IL-17A. In conclusion, we report a novel function of IL-17A in promoting CD8+ T cell cytotoxicity, which may have broad implications in other microbial infections and cancers. IMPORTANCE: Interleukin-17A (IL-17A) and CD8+ T cells regulate diverse immune functions in microbial infections, malignancies, and autoimmune diseases. IL-17A is a proinflammatory cytokine produced by diverse cell types, while CD8+ T cells (known as cytotoxic T cells) are major cells that provide immunity against intracellular pathogens. Previous studies have demonstrated a crucial role of CD8+ T cells in recovery from West Nile virus (WNV) infection. However, the role of IL-17A during WNV infection remains unclear. Here, we demonstrate that IL-17A protects mice from lethal WNV infection by promoting CD8+ T cell-mediated clearance of WNV. In addition, treatment of WNV-infected mice with recombinant IL-17A reduces the viral burden and increases survival of mice, suggesting a potential therapeutic. This novel IL-17A-CD8+ T cell axis may also have broad implications for immunity to other microbial infections and cancers, where CD8+ T cell functions are crucial.


Subject(s)
Cytotoxicity, Immunologic/drug effects , Interleukin-17/pharmacology , T-Lymphocytes, Cytotoxic/drug effects , West Nile Fever/drug therapy , West Nile virus/drug effects , Animals , Brain/drug effects , Brain/immunology , Brain/virology , Female , Gene Expression , Humans , Interleukin-17/genetics , Interleukin-17/immunology , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/immunology , Neurons/virology , Primary Cell Culture , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , Survival Analysis , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/virology , Treatment Outcome , Viral Load/drug effects , Virus Replication/drug effects , West Nile Fever/immunology , West Nile Fever/mortality , West Nile Fever/virology , West Nile virus/genetics , West Nile virus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...