Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Gastrointest Liver Physiol ; 318(1): G53-G65, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31682159

ABSTRACT

Detection of nutritional and noxious food components in the gut is a crucial component of gastrointestinal function. Contents in the gut lumen interact with enteroendocrine cells dispersed throughout the gut epithelium. Enteroendocrine cells release many different hormones, neuropeptides, and neurotransmitters that communicate either directly or indirectly with the central nervous system and the enteric nervous system, a network of neurons and glia located within the gut wall. Several populations of enteric neurons extend processes that innervate the gastrointestinal lamina propria; however, how these processes develop and begin to transmit information from the mucosa is not fully understood. In this study, we found that Tuj1-immunoreactive neurites begin to project out of the myenteric plexus at embryonic day (E)13.5 in the mouse small intestine, even before the formation of villi. Using live calcium imaging, we discovered that neurites were capable of transmitting electrical information from stimulated villi to the plexus by E15.5. In unpeeled gut preparations where all layers were left intact, we also mimicked the basolateral release of 5-HT from enteroendocrine cells, which triggered responses in myenteric cell bodies at postnatal day (P)0. Altogether, our results show that enteric neurons extend neurites out of the myenteric plexus early during mouse enteric nervous system development, innervating the gastrointestinal mucosa, even before villus formation in mice of either sex. Neurites are already able to conduct electrical information at E15.5, and responses to 5-HT develop postnatally.NEW & NOTEWORTHY How enteric neurons project into the gut mucosa and begin to communicate with the epithelium during development is not known. Our study shows that enteric neurites project into the lamina propria as early as E13.5 in the mouse, before development of the submucous plexus and before formation of intestinal villi. These neurites are capable of transmitting electrical signals back to their cell bodies by E15.5 and respond to serotonin applied to neurite terminals by birth.


Subject(s)
Intestinal Mucosa/innervation , Intestine, Small/innervation , Microvilli/physiology , Myenteric Plexus/growth & development , Neurites/physiology , Neurogenesis , Animals , Enteroendocrine Cells/metabolism , Enteroendocrine Cells/physiology , Evoked Potentials , Female , Gestational Age , Male , Mice, Inbred C57BL , Mice, Transgenic , Myenteric Plexus/drug effects , Myenteric Plexus/metabolism , Neurites/drug effects , Neurites/metabolism , Serotonin/pharmacology , Tubulin/metabolism
2.
Front Nutr ; 2: 5, 2015.
Article in English | MEDLINE | ID: mdl-25988134

ABSTRACT

The consumption of fructose has increased tremendously over the last five decades, which is to a large extent due to the development of high-fructose corn syrup (HFCS), a commercial sugar additive that contains high amounts of free fructose. HFCS is often added to processed food and beverages partly because it is a powerful sweetener but even more so because the production is cheap. Although fructose in combination with fiber, vitamins, and minerals, as present in fruits, is a healthy source of energy, isolated fructose, in processed food products has been associated with several health disorders such as insulin resistance and hypertension. Apart from its metabolic consequences, a growing body of literature suggests that free fructose can also affect neuronal systems. High-fructose intake may on the one hand affect central appetite regulation by altering specific components of the endocannabinoid system. On the other hand, it appears to impact on cognitive function by affecting phosphorylation levels of insulin receptor, synapsin 1, and synaptophysin. The present report reviews the recent evidence showing a negative effect of free fructose consumption on central appetite control, as well as cognitive function.

3.
Am J Physiol Gastrointest Liver Physiol ; 307(9): G905-13, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25214399

ABSTRACT

Food intake depends on a tightly controlled interplay of appetite hormones and the enteric (ENS) and central nervous system. Corticosterone (CORT) levels, which are mainly studied with regard to stress, are also increased during fasting. However, the role of CORT in the ENS remains elusive. Therefore, we investigated whether CORT modulates activity of enteric neurons and whether its intracellular regulator, 11ß-hydroxysteroid dehydrogenase (HSD) type 1, is present in the myenteric plexus, using immunohistochemistry and RT-qPCR. Effects of CORT on neuronal activity and expression of neuronal markers in the myenteric plexus were assessed via Ca(2+) imaging and RT-qPCR, respectively, whereas modulations in mixing behavior were measured by video imaging. 11ß-HSD-1 was present in enteric neurons along the gastrointestinal tract, and its expression increased after fasting (control: 0.58 ± 0.09 vs. fasted: 1.5 ± 0.23; P < 0.05). CORT incubation significantly reduced neuronal Ca(2+) transients in tissues stimulated by electrical pulses (control: 1.31 ± 0.01 vs. CORT: 1.27 ± 0.01, P < 0.01) and in cultured neurons (control: 1.85 ± 0.03 vs. CORT: 1.76 ± 0.03, P < 0.05). CORT decreased small intestinal mixing (P < 0.05). Incubation of muscle myenteric plexus preparations with CORT induced an increase in cannabinoid receptor 1 (CB1, P < 0.05) and synaptobrevin (P < 0.05) but not in 11ß-HSD-1 mRNA expression. In addition, fasting induced significant elevations in synaptobrevin (P < 0.05) and CB1 (P < 0.01) mRNA expression. In conclusion, we suggest CORT to be a downstream factor in a feeding state-related pathway that modulates important proteins in the fine tuning of enteric neurotransmission and gastrointestinal motility.


Subject(s)
Corticosterone/blood , Fasting , Myenteric Plexus/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Action Potentials , Animals , Calcium/metabolism , Cells, Cultured , Corticosterone/pharmacology , Intestine, Small/drug effects , Intestine, Small/innervation , Intestine, Small/physiology , Male , Mice , Mice, Inbred C57BL , Myenteric Plexus/cytology , Myenteric Plexus/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , R-SNARE Proteins/genetics , R-SNARE Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...