Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Anat ; 242(2): 312-326, 2023 02.
Article in English | MEDLINE | ID: mdl-36087281

ABSTRACT

In limbless fossorial vertebrates such as caecilians (Gymnophiona), head-first burrowing imposes severe constraints on the morphology and overall size of the head. As such, caecilians developed a unique jaw-closing system involving the large and well-developed m. interhyoideus posterior, which is positioned in such a way that it does not significantly increase head diameter. Caecilians also possess unique muscles among amphibians. Understanding the diversity in the architecture and size of the cranial muscles may provide insights into how a typical amphibian system was adapted for a head-first burrowing lifestyle. In this study, we use dissection and non-destructive contrast-enhanced micro-computed tomography (µCT) scanning to describe and compare the cranial musculature of 13 species of caecilians. Our results show that the general organization of the head musculature is rather constant across extant caecilians. However, the early-diverging Rhinatrema bivittatum mainly relies on the 'ancestral' amphibian jaw-closing mechanism dominated by the m. adductores mandibulae, whereas other caecilians switched to the use of the derived dual jaw-closing mechanism involving the additional recruitment of the m. interhyoideus posterior. Additionally, the aquatic Typhlonectes show a greater investment in hyoid musculature than terrestrial caecilians, which is likely related to greater demands for ventilating their large lungs, and perhaps also an increased use of suction feeding. In addition to three-dimensional interactive models, our study provides the required quantitative data to permit the generation of accurate biomechanical models allowing the testing of further functional hypotheses.


Subject(s)
Amphibians , Skull , Animals , Phylogeny , X-Ray Microtomography , Amphibians/anatomy & histology , Skull/anatomy & histology , Muscle, Skeletal
2.
J Exp Biol ; 225(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35662342

ABSTRACT

Caecilians are predominantly burrowing, elongate, limbless amphibians that have been relatively poorly studied. Although it has been suggested that the sturdy and compact skulls of caecilians are an adaptation to their head-first burrowing habits, no clear relationship between skull shape and burrowing performance appears to exist. However, the external forces encountered during burrowing are transmitted by the skull to the vertebral column, and, as such, may impact vertebral shape. Additionally, the muscles that generate the burrowing forces attach onto the vertebral column and consequently may impact vertebral shape that way as well. Here, we explored the relationships between vertebral shape and maximal in vivo push forces in 13 species of caecilian amphibians. Our results show that the shape of the two most anterior vertebrae, as well as the shape of the vertebrae at 90% of the total body length, is not correlated with peak push forces. Conversely, the shape of the third vertebrae, and the vertebrae at 20% and 60% of the total body length, does show a relationship to push forces measured in vivo. Whether these relationships are indirect (external forces constraining shape variation) or direct (muscle forces constraining shape variation) remains unclear and will require quantitative studies of the axial musculature. Importantly, our data suggest that mid-body vertebrae may potentially be used as proxies to infer burrowing capacity in fossil representatives.


Subject(s)
Amphibians , Skull , Amphibians/physiology , Animals , Head , Spine
3.
J Anat ; 241(3): 716-728, 2022 09.
Article in English | MEDLINE | ID: mdl-35488423

ABSTRACT

Caecilians are elongate, limbless and annulated amphibians that, as far as is known, all have an at least partly fossorial lifestyle. It has been suggested that elongate limbless vertebrates show little morphological differentiation throughout the postcranial skeleton. However, relatively few studies have explored the axial skeleton in limbless tetrapods. In this study, we used µCT data and three-dimensional geometric morphometrics to explore regional differences in vertebral shape across a broad range of caecilian species. Our results highlight substantial differences in vertebral shape along the axial skeleton, with anterior vertebrae being short and bulky, whereas posterior vertebrae are more elongated. This study shows that despite being limbless, elongate tetrapods such as caecilians still show regional heterogeneity in the shape of individual vertebrae along the vertebral column. Further studies are needed, however, to understand the possible causes and functional consequences of the observed variation in vertebral shape in caecilians.


Subject(s)
Amphibians , Spine , Amphibians/anatomy & histology , Animals , Spine/anatomy & histology , Spine/diagnostic imaging
4.
J Exp Biol ; 225(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34897477

ABSTRACT

Caecilians are enigmatic limbless amphibians that, with a few exceptions, all have an at least partly burrowing lifestyle. Although it has been suggested that caecilian evolution resulted in sturdy and compact skulls as an adaptation to their head-first burrowing habits, no relationship between skull shape and burrowing performance has been demonstrated to date. However, the unique dual jaw-closing mechanism and the osteological variability of their temporal region suggest a potential relationship between skull shape and feeding mechanics. Here, we explored the relationships between skull shape, head musculature and in vivo bite forces. Although there is a correlation between bite force and external head shape, no relationship between bite force and skull shape could be detected. Whereas our data suggest that muscles are the principal drivers of variation in bite force, the shape of the skull is constrained by factors other than demands for bite force generation. However, a strong covariation between the cranium and mandible exists. Moreover, both cranium and mandible shape covary with jaw muscle architecture. Caecilians show a gradient between species with a long retroarticular process associated with a large and pennate-fibered m. interhyoideus posterior and species with a short process but long and parallel-fibered jaw adductors. Our results demonstrate the complexity of the relationship between form and function of this jaw system. Further studies that focus on factors such as gape distance or jaw velocity will be needed in order to fully understand the evolution of feeding mechanics in caecilians.


Subject(s)
Amphibians , Bite Force , Amphibians/physiology , Animals , Biomechanical Phenomena , Head , Jaw/physiology , Muscle, Skeletal , Skull
5.
J Exp Biol ; 224(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34494653

ABSTRACT

Caecilians are elongate, limbless and annulated amphibians that, with the exception of one aquatic family, all have an at least partly fossorial lifestyle. It has been suggested that caecilian evolution resulted in sturdy and compact skulls with fused bones and tight sutures, as an adaptation to their head-first burrowing habits. However, although their cranial osteology is well described, relationships between form and function remain poorly understood. In the present study, we explored the relationship between cranial shape and in vivo burrowing forces. Using micro-computed tomography (µCT) data, we performed 3D geometric morphometrics to explore whether cranial and mandibular shapes reflected patterns that might be associated with maximal push forces. The results highlight important differences in maximal push forces, with the aquatic Typhlonectes producing a lower force for a given size compared with other species. Despite substantial differences in head morphology across species, no relationship between overall skull shape and push force could be detected. Although a strong phylogenetic signal may partly obscure the results, our conclusions confirm previous studies using biomechanical models and suggest that differences in the degree of fossoriality do not appear to be driving the evolution of head shape.


Subject(s)
Amphibians , Skull , Animals , Biological Evolution , Body Weights and Measures , Phylogeny , X-Ray Microtomography
6.
Anat Rec (Hoboken) ; 304(10): 2292-2302, 2021 10.
Article in English | MEDLINE | ID: mdl-34089306

ABSTRACT

Burrowing is a common behavior in vertebrates. An underground life-style offers many advantages but also poses important challenges including the high energetic cost of burrowing. Scolecophidians are a group of morphologically derived subterranean snakes that show great diversity in form and function. Although it has been suggested that leptotyphlopids and anomalepidids mostly use existing underground passageways, typhlopids are thought to create their own burrows. However, the mechanisms used to create burrows and the associated forces that animals may be able to generate remain unknown. Here, we provide the first data on push forces in scolecophidians and compare them with those in some burrowing alethinophidian snakes. Our results show that typhlopids are capable of generating higher forces for a given size than other snakes. The observed differences are not due to variation in body diameter or length, suggesting fundamental differences in the mechanics of burrowing or the way in which axial muscles are used. Qualitative observations of skull and vertebral shape suggest that the higher forces exerted by typhlopids may have impacted the evolution of their anatomy. Our results provide the basis for future studies exploring the diversity of form and function in this fascinating group of animals. Quantitative comparisons of the cranial and vertebral shape in addition to collecting functional and ecological data on a wider array of species would be particularly important to test the patterns described here.


Subject(s)
Snakes , Animals , Biological Evolution , Snakes/classification , Snakes/physiology
7.
J Exp Biol ; 222(Pt 20)2019 10 18.
Article in English | MEDLINE | ID: mdl-31558589

ABSTRACT

Manual grasping is widespread among tetrapods but is more prominent and dexterous in primates. Whether the selective pressures that drove the evolution of dexterous hand grasping involved the collection of fruit or predation on mobile insects remains an area of debate. One way to explore this question is to examine preferences for manual versus oral grasping of a moving object. Previous studies on strepsirrhines have shown a preference for oral grasping when grasping static food items and a preference for manual grasping when grasping mobile prey such as insects, but little is known about the factors at play. Using a controlled experiment with a simple and predictable motion of a food item, we tested and compared the grasping behaviours of 53 captive individuals belonging to 17 species of strepsirrhines while grasping swinging food items and static food items. The swinging motion increased the frequency of hand-use for all individuals. Our results provide evidence that the swinging motion of the food is a sufficient parameter to increase hand grasping in a wide variety of strepsirrhine primates. From an evolutionary perspective, this result gives some support to the idea that hand-grasping abilities evolved under selective pressure associated with the predation of food items in motion. Looking at a common grasping pattern across a large set of species, this study provides important insight into comparative approaches to understanding the evolution of the hand grasping of food in primates and potentially other tetrapod taxa.


Subject(s)
Biological Evolution , Food , Hand Strength/physiology , Primates/physiology , Animals , Databases as Topic , Female , Male , Models, Biological , Movement
8.
J Exp Biol ; 222(Pt 5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30683664

ABSTRACT

The ability of an animal to run fast has important consequences on its survival capacity and overall fitness. Previous studies have documented how variation in the morphology of the limbs is related to variation in locomotor performance. Although these studies have suggested direct relations between sprint speed and hindlimb morphology, few quantitative data exist. Consequently, it remains unclear whether selection acts in limb segment lengths, overall muscle mass or muscle architecture (e.g. muscle fiber length and cross-sectional area). Here, we investigate whether muscle architecture (mass, fiber length and physiological cross-sectional area), hindlimb segment dimensions, or both, explain variation in sprint speed across 14 species of Anolis lizards. Moreover, we test whether similar relationships exist between morphology and performance for both sexes, which may not be the case given the known differences in locomotor behavior and habitat use. Our results show that the main driver of sprint speed is the variation in femur length for both males and females. Our results further show sexual dimorphism in the traits studied and, moreover, show differences in the traits that predict maximal sprint speed in males and females. For example, snout vent length and overall muscle mass are also good predictors of sprint speed in males, whereas no relationships between muscle mass and sprint speed was observed in females. Only a few significant relationships were found between muscle architecture (fiber length, cross-sectional area) and sprint speed in male anoles, suggesting that overall muscles size, rather than muscle architecture, appears to be under selection.


Subject(s)
Hindlimb/anatomy & histology , Lizards/anatomy & histology , Lizards/physiology , Locomotion , Animals , Female , Male , Sex Factors , Species Specificity
9.
Anat Rec (Hoboken) ; 301(3): 424-433, 2018 03.
Article in English | MEDLINE | ID: mdl-29418116

ABSTRACT

Lizards are an interesting group to study how habitat use impacts the morphology of the forelimb because they occupy a great diversity of ecological niches. In this study, we specifically investigated whether habitat use impacts the morphology of the forelimb flexor muscles in lizards. To do so, we performed dissections and quantified the physiological cross sectional area (PCSA), the fiber length, and the mass of four flexor muscles in 21 different species of lizards. Our results show that only the PCSA of the m. flexor carpi radialis is different among lizards with different ecologies (arboreal versus non-arboreal). This difference disappeared, however, when taking phylogeny into account. Arboreal species have a higher m. flexor carpi radialis cross sectional area likely allowing them to flex the wrist more forcefully which may allow them climb and hold on to branches better. In contrast, other muscles are not different between arboreal and non-arboreal species. Further studies focusing on additional anatomical features of the lizard forelimb as well as studies documenting how lizards use the arboreal niche are needed to fully understand how an arboreal life style may constrain limb morphology in lizards. Anat Rec, 301:424-433, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Ecosystem , Forelimb/anatomy & histology , Lizards/anatomy & histology , Locomotion , Muscle, Skeletal/anatomy & histology , Animals , Ecology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...