Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Croat Med J ; 57(2): 89-98, 2016 Apr 23.
Article in English | MEDLINE | ID: mdl-27106351

ABSTRACT

AIM: To evaluate the impact of previously unrecognized negative interaction between the Wnt and interleukin (IL) 6 signaling pathways in skeletal tissues as a possible major mechanism leading to age- and inflammation-related destruction of bone and joints. METHODS: Luciferase reporter assays were performed to monitor Wnt pathway activation upon IL-6 and tumor necrosis factor-α (TNFα) treatment. Functional contribution of IL-6 and TNFα interaction to inhibition of bone formation was evaluated in vitro using small hairpin RNAs (shRNA) in mouse mesenchymal precursor cells (MPC) of C2C12 and KS483 lines induced to differentiate into osteoblasts by bone morphogenetic proteins (BMP). RESULTS: IL-6 inhibited the activation of Wnt signaling in primary human synoviocytes, and, together with TNFα and Dickkopf-1, inhibited the activation of Wnt response. ShRNA-mediated knockdown of IL-6 mRNA significantly increased early BMP2/7-induced osteogenesis and rescued it from the negative effect of TNFα in C2C12 cells, as well as intensified bone matrix mineralization in KS483 cells. CONCLUSION: IL-6 is an important mediator in the inhibition of osteoblast differentiation by TNFα, and knockdown of IL-6 partially rescues osteogenesis from the negative control of inflammation. The anti-osteoblastic effects of IL-6 are most likely mediated by its negative interaction with Wnt signaling pathway.


Subject(s)
Arthritis, Rheumatoid/physiopathology , Fibroblasts/metabolism , Osteoblasts/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Bone Morphogenetic Proteins/metabolism , Cell Line/metabolism , Humans , Interleukin-6/pharmacology , Mice , Signal Transduction/physiology , Synovial Membrane/cytology , Tumor Necrosis Factor-alpha/pharmacology , Wnt Signaling Pathway/drug effects
2.
BMC Dev Biol ; 9: 26, 2009 Apr 08.
Article in English | MEDLINE | ID: mdl-19356224

ABSTRACT

BACKGROUND: During skeletogenesis, protein levels of beta-catenin in the canonical Wnt signaling pathway determine lineage commitment of skeletal precursor cells to osteoblasts and chondrocytes. Adenomatous polyposis coli (Apc) is a key controller of beta-catenin turnover by down-regulating intracellular levels of beta-catenin. RESULTS: To investigate whether Apc is involved in lineage commitment of skeletal precursor cells, we generated conditional knockout mice lacking functional Apc in Col2a1-expressing cells. In contrast to other models in which an oncogenic variant of beta-catenin was used, our approach resulted in the accumulation of wild type beta-catenin protein due to functional loss of Apc. Conditional homozygous Apc mutant mice died perinatally showing greatly impaired skeletogenesis. All endochondral bones were misshaped and lacked structural integrity. Lack of functional Apc resulted in a pleiotropic skeletal cell phenotype. The majority of the precursor cells lacking Apc failed to differentiate into chondrocytes or osteoblasts. However, skeletal precursor cells in the proximal ribs were able to escape the noxious effect of functional loss of Apc resulting in formation of highly active osteoblasts. Inactivation of Apc in chondrocytes was associated with dedifferentiation of these cells. CONCLUSION: Our data indicate that a tight Apc-mediated control of beta-catenin levels is essential for differentiation of skeletal precursors as well as for the maintenance of a chondrocytic phenotype in a spatio-temporal regulated manner.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Bone and Bones/metabolism , Embryo, Mammalian/metabolism , beta Catenin/genetics , Animals , Bone and Bones/cytology , Bone and Bones/embryology , Cell Differentiation/genetics , Chondrocytes/cytology , Chondrocytes/metabolism , Chondrogenesis/genetics , Collagen Type II/genetics , Embryo, Mammalian/embryology , Gene Expression Regulation, Developmental , In Situ Hybridization , Mice , Mice, Knockout , Mice, Transgenic , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/genetics , Phenotype , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...