Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Adipocyte ; 13(1): 2339418, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38706095

ABSTRACT

A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.


Subject(s)
ADAM10 Protein , Adipose Tissue , Diet, High-Fat , Mice, Knockout , Animals , Male , Mice , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Adipocytes/metabolism , Adipose Tissue/metabolism , Amyloid Precursor Protein Secretases/metabolism , Diet, High-Fat/adverse effects , Inflammation/metabolism , Insulin Resistance , Membrane Proteins/metabolism , Membrane Proteins/genetics , Obesity/metabolism , Obesity/etiology , Phenotype
2.
Diagnostics (Basel) ; 11(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34679489

ABSTRACT

SARS-CoV-2, the virus responsible for COVID-19, emerged in late 2019 and has since spread throughout the world, infecting over 200 million people. The fast spread of SARS-CoV-2 showcased the need for rapid and sensitive testing methodologies to help track the disease. Over the past 18 months, numerous SARS-CoV-2 variants have emerged. Many of these variants are suggested to be more transmissible as well as less responsive to neutralization by vaccine-induced antibodies. Viral whole-genome sequencing is the current standard for tracking these variants. However, whole-genome sequencing is costly and the technology and expertise are limited to larger reference laboratories. Here, we present the feasibility of a fast, inexpensive methodology using snapback primer-based high-resolution melting to test for >20 high-consequence SARS-CoV-2 spike mutations. This assay can distinguish between multiple variant lineages and be completed in roughly 2 h for less than $10 per sample.

3.
J Mol Diagn ; 23(12): 1671-1679, 2021 12.
Article in English | MEDLINE | ID: mdl-34454108

ABSTRACT

Since the start of the coronavirus disease 2019 (COVID-19) pandemic, molecular diagnostic testing for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has faced substantial supply chain shortages and noteworthy delays in result reporting after sample collection. Supply chain shortages have been most evident in reagents for RNA extraction and rapid diagnostic testing. This study explored the kinetic limitations of extraction-free rapid cycle quantitative real-time RT-PCR for SARS-CoV-2 virus detection using the commercially available capillary-based LightCycler. After optimizing for time and reaction conditions, a protocol for sensitive and specific quantitative RT-PCR of SARS-CoV-2 RNA from nasopharyngeal swabs in <20 minutes was developed, with minimal hands-on time requirements. This protocol improves detection speed while maintaining the sensitivity and specificity of hydrolysis probe-based detection. Percentage agreement between the developed assay and previously tested positive patient samples was 97.6% (n = 40/41), and negative patient samples was 100% (40/40). The study further demonstrates that using purified RNA, SARS-CoV-2 testing using extreme RT-PCR, and product verification by melting can be completed in <3 minutes. Overall, these studies provide a framework for increasing the speed of SARS-CoV-2 and other infectious disease testing.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Humans , Molecular Diagnostic Techniques/methods , Pandemics/prevention & control , RNA, Viral/genetics , Sensitivity and Specificity , Specimen Handling/methods
4.
Adipocyte ; 10(1): 91-100, 2021 12.
Article in English | MEDLINE | ID: mdl-33565916

ABSTRACT

The Adipoq-Cre transgenic mouse is widely used in the development of adipocyte-specific genetic manipulations for the study of obesity and type 2 diabetes. In the process of developing a new mouse model utilizing the adipocyte selective Adipoq-Cre transgenic mouse, strong genetic linkage between a gene of interest, Adam10, and the Adipoq-Cre transgene was discovered. Whole-genome sequencing of the Adipoq-Cre transgenic mouse model identified the genomic insertion site within the Tbx18 gene locus on chromosome 9 and this insertion causes a significant decrease in Tbx18 gene expression in adipose tissue. Insertion of genes Kng2, Kng1, Eif4a2 and Rfc4 also occurred in the Adipoq-Cre transgenic mouse, and these passenger genes may have functional consequences in various tissues.


Subject(s)
Adiponectin/genetics , Transgenes/genetics , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Gene Expression/genetics , Integrases/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Obesity/metabolism , Organ Specificity/genetics , Polymerase Chain Reaction/methods , Promoter Regions, Genetic , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
5.
J Allergy Clin Immunol ; 147(5): 1936-1948.e9, 2021 05.
Article in English | MEDLINE | ID: mdl-33130063

ABSTRACT

BACKGROUND: Nothing is known about the mechanisms by which increased ceramide levels in the lung contribute to allergic responses and asthma severity. OBJECTIVE: We sought to investigate the functional role of ceramide in mouse models of allergic airway disease that recapitulate the cardinal clinical features of human allergic asthma. METHODS: Allergic airway disease was induced in mice by repeated intranasal administration of house dust mite or the fungal allergen Alternaria alternata. Processes that can be regulated by ceramide and are important for severity of allergic asthma were correlated with ceramide levels measured by mass spectrometry. RESULTS: Both allergens induced massive pulmonary apoptosis and also significantly increased reactive oxygen species in the lung. Prevention of increases in lung ceramide levels mitigated allergen-induced apoptosis, reactive oxygen species, and neutrophil infiltration. In contrast, dietary supplementation of the antioxidant α-tocopherol decreased reactive oxygen species but had no significant effects on elevation of ceramide level or apoptosis, indicating that the increases in lung ceramide levels in allergen-challenged mice are not mediated by oxidative stress. Moreover, specific ceramide species were altered in bronchoalveolar lavage fluid from patients with severe asthma compared with in bronchoalveolar lavage fluid from individuals without asthma. CONCLUSION: Our data suggest that elevation of ceramide level after allergen challenge contributes to the apoptosis, reactive oxygen species generation, and neutrophilic infiltrate that characterize the severe asthmatic phenotype. Ceramide might be the trigger of formation of Creola bodies found in the sputum of patients with severe asthma and could be a biomarker to optimize diagnosis and to monitor and improve clinical outcomes in this disease.


Subject(s)
Asthma/immunology , Ceramides/immunology , Lung/immunology , Oxidative Stress , Adult , Allergens/immunology , Alternaria/immunology , Animals , Apoptosis , Disease Models, Animal , Female , Humans , Inflammation/immunology , Male , Mice, Inbred C57BL , Middle Aged , Pyroglyphidae/immunology , Reactive Oxygen Species/immunology , Young Adult
6.
Biochem Biophys Rep ; 24: 100803, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32984557

ABSTRACT

The role of the inducible costimulatory of T cells (ICOS) has been shown to be important for many different T cell outcomes and is indispensable for follicular helper T cell (TFH) responses. Since its discovery, there have been several studies on the regulation of ICOS at a transcriptional level. However, the post-translational regulation of ICOS has not been well characterized. Here, we demonstrate that ICOS is internalized following ligation. We show that costimulation with CD3 results in differential internalization and fate than stimulation of ICOS alone. Additionally, we show that ICOS internalization is PI3K and clathrin mediated. The studies presented here not only increase the mechanistic understanding of ICOS post-translational regulation but also give insight into the potential mechanisms by which T cells expressing high affinity receptors may be preferentially chosen to become TFH cells with increased ICOS levels.

7.
Adipocyte ; 9(1): 509-522, 2020 12.
Article in English | MEDLINE | ID: mdl-32892692

ABSTRACT

The role of ADAM17, its substrates, and its natural inhibitor has been well studied in the context of inflammation, including metabolic inflammation, with mixed results. Previous studies examining global Adam17 knockdown models and ADAM17 inhibition using overexpression of endogenous ADAM17 inhibitors have shown improved metabolic health and decreased metabolic inflammation. However, there have been no studies examining the role of adipocyte ADAM17 using in vivo models. In this study, we developed an adipocyte-specific Adam17 knockout model using Adipoq-Cre-expressing mice crossed with Adam17-floxed mice. Using this model, we show that loss of adipocyte ADAM17 plays no evident role in baseline metabolic responses. Surprisingly, in a state of metabolic stress using high-fat diet (HFD), we observed that adipocyte ADAM17 had little effect overall on the metabolic phenotype as well as inflammatory cell populations. Using whole-body metabolic phenotyping, we show that loss of ADAM17 has no effect on energy utilization both at a baseline state as well as following HFD. However, lastly, using high-parameter flow cytometry, we show that loss of adipocyte ADAM17 alters macrophage and eosinophil populations following HFD. Overall, the studies presented here give more insight into the role of ADAM17 in metabolic responses and metabolic inflammation, specifically in adipocytes.


Subject(s)
ADAM17 Protein/genetics , Adipocytes/metabolism , Energy Metabolism , Inflammation/etiology , Inflammation/metabolism , ADAM17 Protein/metabolism , Animals , Biomarkers , Cytokines/metabolism , Diet, High-Fat , Disease Models, Animal , Disease Susceptibility , Female , Immunophenotyping , Inflammation/pathology , Inflammation Mediators/metabolism , Male , Mice
8.
Biochem Biophys Res Commun ; 522(2): 442-447, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31771880

ABSTRACT

ADAM17 is known to contribute to the immune system through its shedding of tumor necrosis factor alpha (TNFα). However, the role of ADAM17 in B cell biology is not well characterized. To determine whether B cell ADAM17 contributes to T cell-independent humoral immune responses, we crossed CD19 Cre transgenic mice with mice bearing a floxed allele of ADAM17 (ADAM17CD19). In this study, we show a B cell intrinsic role for ADAM17 in regulating marginal zone B cell (MZB) numbers in mice. Interestingly, we demonstrate that the loss of B cell ADAM17 results in reduced MZB numbers in the naïve state and after immunization with T-independent antigen, yet enhanced humoral immunity to T cell independent antigens. We additionally find elevated TACI and CD138 levels on plasma cells following immunization in ADAM17CD19 mice. Overall, these findings suggest that B cell ADAM17 may orchestrate T independent immune responses through both MZB numbers and plasma cell antibody production.


Subject(s)
ADAM17 Protein/metabolism , B-Lymphocytes/immunology , Immunity, Humoral , Syndecan-1/metabolism , T-Lymphocytes/immunology , Transmembrane Activator and CAML Interactor Protein/metabolism , Animals , Biomarkers/metabolism , Cell Survival , Immunization , Mice, Transgenic , Plasma Cells/metabolism
9.
Biochem Biophys Rep ; 18: 100624, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31193642

ABSTRACT

Breast cancer remains a substantial clinical problem worldwide, and cancer-associated cachexia is a condition associated with poor prognosis in this and other malignancies. Adipose tissue is involved in the development and progression of cancer-associated cachexia, but its various roles and mechanisms of action are not completely defined, especially as it relates to breast cancer. Interleukin 6 has been implicated in several mechanisms contributing to increased breast cancer tumorigenesis, as well as a net-negative energy balance and cancer-associated cachexia via adipose tissue remodeling in other models of cancer; however, its potential role in breast cancer-associated white adipose browning has not been explored. In this study, we demonstrate localized white adipose tissue browning in a spontaneous model of murine mammary cancer. We then used an in vitro murine adipocyte culture system with the E0771 and 4T1 cell lines as models of breast cancer. We demonstrate that while the E0771 and 4T1 secretomes and cross-talk with white adipocytes alter white adipocyte mRNA expression, they do not directly induce white adipocyte browning. Additionally, we show that neither exogenous administration of interleukin 6 alone or with its soluble receptor directly induce white adipocyte browning. Together, these results demonstrate that neither the E0771 or 4T1 murine breast cancer cell lines, nor interleukin 6, directly cause browning of cultured white adipocytes. This suggests that their roles in adipose tissue remodeling are more complex and indirect in nature.

10.
F1000Res ; 82019.
Article in English | MEDLINE | ID: mdl-31168357

ABSTRACT

Immunoglobulin E (IgE), though constitutively present at low levels, is most commonly studied in atopic disease where it plays a vital role in mast cell degranulation and in initiating a T helper 2 (Th2) response. With the advent of better detection assays, however, researchers are discovering the importance of IgE in actively contributing to many disease states and pathologies. This review will discuss the latest findings in IgE beyond its role in allergies and recently discovered roles for IgE in its cell-bound form on FcεRI-expressing effector cells like monocytes and dendritic cells. In terms of parasites, we will discuss helminth-induced IgE that appears to protect the worms from immune recognition and a tick-borne illness that elicits an IgE response against red meat. Next, we describe recent findings of how auto-reactive IgE can contribute to the progression of lupus and induce organ damage. Finally, we summarize the emerging roles of IgE in tumor surveillance and antibody-dependent cytotoxicity. We additionally discuss recent or ongoing clinical trials that either target harmful IgE or use the unique characteristics of the isotype.


Subject(s)
Immunoglobulin E/immunology , Receptors, IgE/immunology , Animals , Cell Degranulation , Dendritic Cells/immunology , Helminths , Humans , Hypersensitivity/immunology , Mast Cells/immunology , Monocytes/immunology , Th2 Cells/immunology
11.
Biochem Biophys Res Commun ; 512(4): 723-728, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30926166

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) play an important role in the initiation of type-2 immune responses. Numerous targets have been identified that may activate or repress ILC2 function, though few negative regulatory feedback pathways induced upon activation have been shown to be operative in ILC2s. Here we demonstrate that loss of ADAM17 from ILC2s results in a selective defect in IL-33 responsiveness, but not IL-25 responsiveness. We find that IL1R2 is significantly upregulated at both the transcript and protein level in IL-33 activated ILC2s. We are also able to demonstrate that ADAM17 regulates IL1R2 levels on ILC2s in both a constitutive and activation induced manner. Additionally, IL1R2+ ILC2s, a unique subset of ILC2s, have decreased Il5 and Il13 transcripts following IL-33 stimulation. Overall, these data suggest that the expression of IL1R2 may act as an activation-induced negative regulatory feedback mechanism to decrease ILC2 responsiveness to IL-33.


Subject(s)
ADAM17 Protein/immunology , Interleukin-33/immunology , Lymphocytes/immunology , ADAM17 Protein/genetics , Animals , Cells, Cultured , Gene Deletion , Immunity, Innate , Lymphocytes/metabolism , Mice, Inbred C57BL
12.
J Immunol ; 202(3): 664-674, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30610163

ABSTRACT

The role of ICOS and its ligand (ICOSL) have both been shown to be essential for proper humoral responses as well as autoimmune Ab development in mouse models of lupus. In this paper, we report a specific role for the metalloprotease ADAM10 on B cells in regulating both ICOSL and ICOS in a mouse model of increased humoral immunity using B6mir146a-/- mice and a model of lymphoproliferative disease using the well-characterized lpr model. B6lpr mice lacking ADAM10 on B cells (A10Blpr) have decreased nodal proliferation and T cell accumulation compared with control B6lpr mice. Additionally, A10Blpr mice have a drastic reduction in autoimmune anti-dsDNA Ab production. In line with this, we found a significant reduction in follicular helper T cells and germinal center B cells in these mice. We also show that lymphoproliferation in this model is closely tied to elevated ICOS levels and decreased ICOSL levels. Overall, our data not only show a role of B cell ADAM10 in control autoimmunity but also increase our understanding of the regulation of ICOS and ICOSL in the context of autoimmunity.


Subject(s)
ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , B-Lymphocytes/immunology , Immunity, Humoral , Inducible T-Cell Co-Stimulator Ligand/genetics , Inducible T-Cell Co-Stimulator Protein/genetics , Lupus Erythematosus, Systemic/immunology , Membrane Proteins/genetics , ADAM10 Protein/immunology , Amyloid Precursor Protein Secretases/immunology , Animals , Autoantibodies/blood , Autoimmunity , Cell Proliferation , Disease Models, Animal , Disease Progression , Gene Expression Regulation , Membrane Proteins/immunology , Mice , Mice, Knockout , MicroRNAs/genetics
13.
Cytokine ; 111: 434-444, 2018 11.
Article in English | MEDLINE | ID: mdl-29934048

ABSTRACT

Thermogenic fat is a promising target for new therapies in diabetes and obesity. Understanding how thermogenic fat develops is important to develop rational strategies to treat obesity. Previously, we have shown that Tyk2 and STAT3, part of the JAK-STAT pathway, are necessary for proper development of classical brown fat. Using primary preadipocytes isolated from newborn mice we demonstrate that STAT3 is required for differentiation and robust expression of Uncoupling Protein 1 (UCP1). We also confirm that STAT3 is necessary during the early induction stage of differentiation and is dispensable during the later terminal differentiation stage. The inability of STAT3-/- preadipocytes to differentiate can be rescued using Wnt ligand secretion inhibitors when applied during the induction stage. Through chemical inhibition and RNAi, we show that it is the canonical ß-catenin pathway that is responsible for the block in differentiation; inhibition or knockdown of ß-catenin can fully rescue adipogenesis and UCP1 expression in the STAT3-/- adipocytes. During the induction stage, Wnts 1, 3a, and 10b have increased expression in the STAT3-/- adipocytes, potentially explaining the increased levels and activity of ß-catenin. Our results for the first time point towards an interaction between the JAK/STAT pathway and the Wnt/ß-catenin pathway during the early stages of in-vitro adipogenesis.


Subject(s)
Adipogenesis/physiology , Adipose Tissue, Brown/metabolism , Myogenic Regulatory Factor 5/metabolism , STAT3 Transcription Factor/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Adipocytes/metabolism , Animals , Cell Differentiation/physiology , Mice , Mice, Inbred C57BL , Signal Transduction/physiology , TYK2 Kinase/metabolism , Uncoupling Protein 1/metabolism
14.
Biochem Biophys Res Commun ; 501(4): 851-857, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29750960

ABSTRACT

Adipocyte differentiation is a tightly regulated process which requires the sequential and organized expression of numerous genes and proteins. Phosphorylation of cytoplasmic proteins and key transcription factors represents a critical regulatory mechanism of the process leading to adipocyte maturation and modulation of associated metabolic pathways. Despite the recognition of the importance of protein phosphorylation in adipocyte biology, relatively little is known about the role of specific kinases in thermogenic (brown or beige) adipocyte differentiation and function. In this study, we demonstrate that the non-receptor protein tyrosine kinase 2 beta (PTK2B) plays a critical role in murine beige adipocyte differentiation. We observed that PTK2B protein expression is associated with beige adipocyte differentiation in cultured, immortalized, inguinal stromal vascular fraction cells. CRISPR/Cas9-mediated knock-out of Ptk2b results in non-differentiating white adipocytes, and differentiated beige adipocytes with significantly reduced thermogenic gene and protein expression, enlarged lipid droplet size, and altered mitochondrial respiration. Together, our data in a cell culture system provides evidence for a role of PTK2B in the differentiation of murine beige adipocytes.


Subject(s)
Adipocytes, Beige/cytology , Adipocytes, Beige/enzymology , Cell Differentiation , Focal Adhesion Kinase 2/metabolism , Adipocytes, White/cytology , Adipocytes, White/metabolism , Adipogenesis/genetics , Animals , Cell Respiration , Cells, Cultured , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Thermogenesis/genetics
15.
Cell Rep ; 22(7): 1824-1834, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29444434

ABSTRACT

Helminth infection is known for generating large amounts of poly-specific IgE. Here we demonstrate that innate-like B1 cells are responsible for this IgE production during infection with the nematode parasites Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. In vitro analysis of B1 cell immunoglobulin class switch recombination to IgE demonstrated a requirement for anti-CD40 and IL-4 that was further enhanced when IL-5 was added or when the B1 source was helminth infected mice. An IL-25-induced upregulation of IgE in B1 cells was also demonstrated. In T cell-reconstituted RAG1-/- mice, N. brasiliensis clearance was enhanced with the addition of B2 cells in an IgE-dependent manner. This enhanced clearance was impeded by reconstitution with IgE sufficient B1 cells. Mucosal mast cells mediated the B2 cell enhancement of clearance in the absence of B1 cells. The data support B1 cell IgE secretion as a regulatory response exploited by the helminth.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin E/metabolism , Mast Cells/metabolism , Parasites/physiology , Strongylida Infections/immunology , Animals , Antibody Formation/immunology , Cell Degranulation , Epitopes/immunology , Immunization , Interleukins/metabolism , Mast Cells/physiology , Mice , Nematospiroides dubius/physiology , Nippostrongylus/physiology , T-Lymphocytes/immunology
16.
J Immunol ; 199(7): 2305-2315, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28814605

ABSTRACT

The proper regulation of ICOS and ICOS ligand (ICOSL) has been shown to be essential for maintaining proper immune homeostasis. Loss of either protein results in defective humoral immunity, and overexpression of ICOS results in aberrant Ab production resembling lupus. How ICOSL is regulated in response to ICOS interaction is still unclear. We demonstrate that a disintegrin and metalloproteinase (ADAM)10 is the primary physiological sheddase of ICOSL in mice and humans. Using an in vivo system in which ADAM10 is deleted only on B cells, elevated levels of ICOSL were seen. This increase is also seen when ADAM10 is deleted from human B cell lines. Identification of the primary sheddase has allowed the characterization of a novel mechanism of ICOS regulation. In wild-type mice, interaction of ICOS/ICOSL results in ADAM10-induced shedding of ICOSL on B cells and moderate ICOS internalization on T cells. When this shedding is blocked, excessive ICOS internalization occurs. This results in severe defects in T follicular helper development and TH2 polarization, as seen in a house dust mite exposure model. In addition, enhanced TH1 and TH17 immune responses are seen in experimental autoimmune encephalomyelitis. Blockade of ICOSL rescues T cell ICOS surface expression and rescues, at least in part, T follicular helper numbers and the abnormal Ab production previously reported in these mice. Overall, we propose a novel regulation of the ICOS/ICOSL axis, with ADAM10 playing a direct role in regulating ICOSL, as well as indirectly regulating ICOS, thus controlling ICOS/ICOSL-dependent responses.


Subject(s)
B-Lymphocytes/immunology , Gene Expression Regulation , Inducible T-Cell Co-Stimulator Ligand/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , ADAM10 Protein/deficiency , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/deficiency , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Homeostasis , Humans , Inducible T-Cell Co-Stimulator Ligand/genetics , Inducible T-Cell Co-Stimulator Ligand/immunology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Pyroglyphidae/immunology , Th1 Cells/immunology , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...