Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Sci Technol ; 46(13): 6992-7000, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22296331

ABSTRACT

Sulfidation of metallic nanoparticles such as silver nanoparticles (AgNPs) released to the environment may be an important detoxification mechanism. Two types of AgNPs-an engineered polydisperse and aggregated AgNP powder, and a laboratory-synthesized, relatively monodisperse AgNP aqueous dispersion-were studied. The particles were sulfidized to varying degrees and characterized to determine the effect of initial AgNP polydispersity and aggregation state on AgNP sulfidation, and then exposed to Escherichia coli to determine if the degree of sulfidation of pristine AgNPs affects growth inhibition of bacteria. The extent of sulfidation was found to depend on the HS(-)/Ag ratio. However, for the same reaction times, the more monodisperse particles were fully transformed to Ag(2)S, and the polydisperse, aggregated particles were not fully sulfidized, thus preserving the toxic potential of Ag(0) in the aggregates. A higher Ag(2)S:Ag(0) ratio in the sulfidized nanoparticles resulted in less growth inhibition of E. coli over 6 h of exposure. These results suggest that the initial properties of AgNPs can affect sulfidation products, which in turn affect microbial growth inhibition, and that these properties should be considered in assessing the environmental impact of AgNPs.


Subject(s)
Escherichia coli/drug effects , Metal Nanoparticles/toxicity , Silver/toxicity , Sulfides/toxicity , Water Pollutants, Chemical/toxicity , Escherichia coli/growth & development , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Particle Size , Silver/chemistry , Sulfides/chemistry , Toxicity Tests , Water Pollutants, Chemical/chemistry
3.
J Contam Hydrol ; 131(1-4): 9-28, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22326687

ABSTRACT

While the capability of nanoscale zero-valent iron (NZVI) to dechlorinate organic compounds in aqueous solutions has been demonstrated, the ability of NZVI to remove dense non-aqueous phase liquid (DNAPL) from source zones under flow-through conditions similar to a field scale application has not yet been thoroughly investigated. To gain insight on simultaneous DNAPL dissolution and NZVI-mediated dechlorination reactions after direct placement of NZVI into a DNAPL source zone, a combined experimental and modeling study was performed. First, a DNAPL tetrachloroethene (PCE) source zone with emplaced NZVI was built inside a small custom-made flow cell and the effluent PCE and dechlorination byproducts were monitored over time. Second, a model for rate-limited DNAPL dissolution and NZVI-mediated dechlorination of PCE to its three main reaction byproducts with a possibility for partitioning of these byproducts back into the DNAPL was formulated. The coupled processes occurring in the flow cell were simulated and analyzed using a detailed three-dimensional numerical model. It was found that subsurface emplacement of NZVI did not markedly accelerate DNAPL dissolution or the DNAPL mass-depletion rate, when NZVI at a particle concentration of 10g/L was directly emplaced in the DNAPL source zone. To react with NZVI the DNAPL PCE must first dissolve into the groundwater and the rate of dissolution controls the longevity of the DNAPL source. The modeling study further indicated that faster reacting particles would decrease aqueous contaminant concentrations but there is a limit to how much the mass removal rate can be increased by increasing the dechlorination reaction rate. To ensure reduction of aqueous contaminant concentrations, remediation of DNAPL contaminants with NZVI should include emplacement in a capture zone down-gradient of the DNAPL source.


Subject(s)
Groundwater/analysis , Iron/chemistry , Nanoparticles/chemistry , Tetrachloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Chromatography, Gas , Halogenation , Models, Chemical , Models, Theoretical , Nanotechnology
4.
Environ Sci Technol ; 35(4): 696-702, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11349280

ABSTRACT

The aqueous-phase H2 concentration ([H2](aq)) and the presence of H2-utilizing competitive solutes affect TCE dechlorination efficiency in Pd-based in-well treatment reactors. The effect of [H2](aq) and H2-utilizing competing solutes (cis-DCE, trans-DCE, 1,1-DCE, dissolved oxygen (DO), nitrite, nitrate) on the TCE transformation rate and product distribution were evaluated using 100 mg/L of a powdered Pd-on-Al2O3 catalysts in batch reactors or 1.0 g of a 1.6-mm Pd-on-gamma-Al2O3 catalyst in column reactors. The TCE dechlorination rate constant decreased by 55% from 0.034 +/- 0.006 to 0.015 +/- 0.001 min-1 when the [H2](aq) decreased from 1000 to 100 microM and decreased sharply to 0.0007 +/- 0.0003 min-1 when the [H2](aq) decreased from 100 to 10 microM. Production of reactive chlorinated intermediates and C4-C6 radical coupling products increased with decreasing [H2](aq). At an [H2](aq) of 10 microM (P/Po = 0.01), DCE isomers and vinyl chloride accounted for as much as 9.8% of the TCE transformed at their maximum but disappeared thereafter, and C4-C6 radical coupling products accounted for as much as 18% of TCE transformed. The TCE transformation rate was unaffected by the presence of cis-DCE (202 microM), trans-DCE (89 microM), and 1,1-DCE (91 microM), indicating that these compounds do not compete with TCE for catalyst active sites. DO is twice as reactive as TCE but had no effect on TCE conversion in the column below a concentration of 370 microM (11.8 mg/L), indicating that DO and TCE will not compete for active catalyst sites at typical groundwater DO concentrations. TCE conversion in the column was reduced by as much as a factor of 10 at influent DO levels greater than 450 mM (14.3 mg/L) because the [H2](aq) fell below 100 microM due to H2 utilized in DO conversion. Nitrite reacts 2-5 times slower than TCE and reduced TCE conversion by less than 4% at a concentration of 6630 microM (305 mg/L). Nitrate was not reactive and did not effect TCE conversion at a concentration of 1290 microM (80 mg/L).


Subject(s)
Hydrogen/chemistry , Palladium/chemistry , Solvents/chemistry , Trichloroethylene/chemistry , Water Pollutants, Chemical/analysis , Chlorine Compounds/chemistry , Nitrates , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...