Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 297(3): 101099, 2021 09.
Article in English | MEDLINE | ID: mdl-34418434

ABSTRACT

Cannabinoid receptor interacting protein 1a (CRIP1a) modulates CB1 cannabinoid receptor G-protein coupling in part by altering the selectivity for Gαi subtype activation, but the molecular basis for this function of CRIP1a is not known. We report herein the first structure of CRIP1a at a resolution of 1.55 Å. CRIP1a exhibits a 10-stranded and antiparallel ß-barrel with an interior comprised of conserved hydrophobic residues and loops at the bottom and a short helical cap at the top to exclude solvent. The ß-barrel has a gap between strands ß8 and ß10, which deviates from ß-sandwich fatty acid-binding proteins that carry endocannabinoid compounds and the Rho-guanine nucleotide dissociation inhibitor predicted by computational threading algorithms. The structural homology search program DALI identified CRIP1a as homologous to a family of lipidated-protein carriers that includes phosphodiesterase 6 delta subunit and Unc119. Comparison with these proteins suggests that CRIP1a may carry two possible types of cargo: either (i) like phosphodiesterase 6 delta subunit, cargo with a farnesyl moiety that enters from the top of the ß-barrel to occupy the hydrophobic interior or (ii) like Unc119, cargo with a palmitoyl or a myristoyl moiety that enters from the side where the missing ß-strand creates an opening to the hydrophobic pocket. Fluorescence polarization analysis demonstrated CRIP1a binding of an N-terminally myristoylated 9-mer peptide mimicking the Gαi N terminus. However, CRIP1a could not bind the nonmyristolyated Gαi peptide or cargo of homologs. Thus, binding of CRIP1a to Gαi proteins represents a novel mechanism to regulate cell signaling initiated by the CB1 receptor.


Subject(s)
Carrier Proteins/metabolism , Carrier Proteins/ultrastructure , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Cannabinoids/metabolism , Carrier Proteins/genetics , Endocannabinoids , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure , Membrane Proteins/metabolism , Mice , Peptides/metabolism , Protein Binding , Protein Conformation , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/ultrastructure , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/ultrastructure
2.
ACS Med Chem Lett ; 12(7): 1116-1123, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34267881

ABSTRACT

Both glycolate oxidase (GO) and lactate dehydrogenase A (LDHA) influence the endogenous synthesis of oxalate and are clinically validated targets for treatment of primary hyperoxaluria (PH). We investigated whether dual inhibition of GO and LDHA may provide advantage over single agents in treating PH. Utilizing a structure-based drug design (SBDD) approach, we developed a series of novel, potent, dual GO/LDHA inhibitors. X-ray crystal structures of compound 15 bound to individual GO and LDHA proteins validated our SBDD strategy. Dual inhibitor 7 demonstrated an IC50 of 88 nM for oxalate reduction in an Agxt-knockdown mouse hepatocyte assay. Limited by poor liver exposure, this series of dual inhibitors failed to demonstrate significant PD modulation in an in vivo mouse model. This work highlights the challenges in optimizing in vivo liver exposures for diacid containing compounds and limited benefit seen with dual GO/LDHA inhibitors over single agents alone in an in vitro setting.

3.
Antioxidants (Basel) ; 10(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208049

ABSTRACT

Human peroxiredoxins (Prx) are a family of antioxidant enzymes involved in a myriad of cellular functions and diseases. During the reaction with peroxides (e.g., H2O2), the typical 2-Cys Prxs change oligomeric structure between higher order (do)decamers and disulfide-linked dimers, with the hyperoxidized inactive state (-SO2H) favoring the multimeric structure of the reduced enzyme. Here, we present a study on the structural requirements for the repair of hyperoxidized 2-Cys Prxs by human sulfiredoxin (Srx) and the relative efficacy of physiological reductants hydrogen sulfide (H2S) and glutathione (GSH) in this reaction. The crystal structure of the toroidal Prx1-Srx complex shows an extended active site interface. The loss of this interface within engineered Prx2 and Prx3 dimers yielded variants more resistant to hyperoxidation and repair by Srx. Finally, we reveal for the first time Prx isoform-dependent use of and potential cooperation between GSH and H2S in supporting Srx activity.

4.
Antioxidants (Basel) ; 10(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498547

ABSTRACT

A central hallmark of tumorigenesis is metabolic alterations that increase mitochondrial reactive oxygen species (mROS). In response, cancer cells upregulate their antioxidant capacity and redox-responsive signaling pathways. A promising chemotherapeutic approach is to increase ROS to levels incompatible with tumor cell survival. Mitochondrial peroxiredoxin 3 (PRX3) plays a significant role in detoxifying hydrogen peroxide (H2O2). PRX3 is a molecular target of thiostrepton (TS), a natural product and FDA-approved antibiotic. TS inactivates PRX3 by covalently adducting its two catalytic cysteine residues and crosslinking the homodimer. Using cellular models of malignant mesothelioma, we show here that PRX3 expression and mROS levels in cells correlate with sensitivity to TS and that TS reacts selectively with PRX3 relative to other PRX isoforms. Using recombinant PRXs 1-5, we demonstrate that TS preferentially reacts with a reduced thiolate in the PRX3 dimer at mitochondrial pH. We also show that partially oxidized PRX3 fully dissociates to dimers, while partially oxidized PRX1 and PRX2 remain largely decameric. The ability of TS to react with engineered dimers of PRX1 and PRX2 at mitochondrial pH, but inefficiently with wild-type decameric protein at cytoplasmic pH, supports a novel mechanism of action and explains the specificity of TS for PRX3. Thus, the unique structure and propensity of PRX3 to form dimers contribute to its increased sensitivity to TS-mediated inactivation, making PRX3 a promising target for prooxidant cancer therapy.

5.
Biomolecules ; 10(12)2020 11 27.
Article in English | MEDLINE | ID: mdl-33261012

ABSTRACT

Endocannabinoid signaling depends upon the CB1 and CB2 cannabinoid receptors, their endogenous ligands anandamide and 2-arachidonoylglycerol, and intracellular proteins that mediate responses via the C-terminal and other intracellular receptor domains. The CB1 receptor regulates and is regulated by associated G proteins predominantly of the Gi/o subtypes, ß-arrestins 1 and 2, and the cannabinoid receptor-interacting protein 1a (CRIP1a). Evidence for a physiological role for CRIP1a is emerging as data regarding the cellular localization and function of CRIP1a are generated. Here we summarize the neuronal distribution and role of CRIP1a in endocannabinoid signaling, as well as discuss investigations linking CRIP1a to development, vision and hearing sensory systems, hippocampus and seizure regulation, and psychiatric disorders including schizophrenia. We also examine the genetic and epigenetic association of CRIP1a within a variety of cancer subtypes. This review provides evidence upon which to base future investigations on the function of CRIP1a in health and disease.


Subject(s)
Neoplasms/metabolism , Receptors, Cannabinoid/metabolism , Schizophrenia/metabolism , Seizures/metabolism , Animals , Humans
6.
Clin J Am Soc Nephrol ; 15(7): 1056-1065, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32165440

ABSTRACT

Patients with primary hyperoxaluria experience kidney stones from a young age and can develop progressive oxalate nephropathy. Progression to kidney failure often develops over a number of years, and is associated with systemic oxalosis, intensive dialysis, and often combined kidney and liver transplantation. There are no therapies approved by the Food and Drug Association. Thus, the Kidney Health Initiative, in partnership with the Oxalosis and Hyperoxaluria Foundation, initiated a project to identify end points for clinical trials. A workgroup of physicians, scientists, patients with primary hyperoxaluria, industry, and United States regulators critically examined the published literature for clinical outcomes and potential surrogate end points that could be used to evaluate new treatments. Kidney stones, change in eGFR, urine oxalate, and plasma oxalate were the strongest candidate end points. Kidney stones affect how patients with primary hyperoxaluria feel and function, but standards for measurement and monitoring are lacking. Primary hyperoxaluria registry data suggest that eGFR decline in most patients is gradual, but can be unpredictable. Epidemiologic data show a strong relationship between urine oxalate and long-term kidney function loss. Urine oxalate is reasonably likely to predict clinical benefit, due to its causal role in stone formation and kidney damage in CKD stages 1-3a, and plasma oxalate is likely associated with risk of systemic oxalosis in CKD 3b-5. Change in slope of eGFR could be considered the equivalent of a clinically meaningful end point in support of traditional approval. A substantial change in urine oxalate as a surrogate end point could support traditional approval in patients with primary hyperoxaluria type 1 and CKD stages 1-3a. A substantial change in markedly elevated plasma oxalate could support accelerated approval in patients with primary hyperoxaluria and CKD stages 3b-5. Primary hyperoxaluria type 1 accounts for the preponderance of available data, thus heavily influences the conclusions. Addressing gaps in data will further facilitate testing of promising new treatments, accelerating improved outcomes for patients with primary hyperoxaluria.


Subject(s)
Endpoint Determination , Hyperoxaluria, Primary/physiopathology , Hyperoxaluria, Primary/therapy , Oxalic Acid/blood , Oxalic Acid/urine , Biomarkers/blood , Biomarkers/urine , Disease Progression , Glomerular Filtration Rate , Humans , Hyperoxaluria, Primary/complications , Kidney Calculi/etiology
7.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165633, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31821850

ABSTRACT

The major clinical manifestation of the Primary Hyperoxalurias (PH) is increased production of oxalate, as a consequence of genetic mutations that lead to aberrant glyoxylate and hydroxyproline metabolism. Hyperoxaluria can lead to the formation of calcium-oxalate kidney stones, nephrocalcinosis and renal failure. Current therapeutic approaches rely on organ transplants and more recently modifying the pathway of oxalate synthesis using siRNA therapy. We have recently reported that the metabolism of trans-4-hydroxy-L-proline (Hyp), an amino acid derived predominantly from collagen metabolism, is a significant source of oxalate production in individuals with PH2 and PH3. Thus, the first enzyme in the Hyp degradation pathway, hydroxyproline dehydrogenase (HYPDH), represents a promising therapeutic target for reducing endogenous oxalate production in these individuals. This is supported by the observation that individuals with inherited mutations in HYPDH (PRODH2 gene) have no pathological consequences. The creation of mouse models that do not express HYPDH will facilitate research evaluating HYPDH as a target. We describe the phenotype of the Prodh2 knock out mouse model and show that the lack of HYPDH in PH mouse models results in lower levels of urinary oxalate excretion, consistent with our previous metabolic tracer and siRNA-based knockdown studies. The double knockout mouse, Grhpr KO (PH2 model) and Prodh2 KO, prevented calcium-oxalate crystal deposition in the kidney, when placed on a 1% Hyp diet. These observations support the use of the Grhpr KO mice to screen HYPDH inhibitors in vivo. Altogether these data support HYPDH as an attractive therapeutic target for PH2 and PH3 patients.


Subject(s)
Glycolates/metabolism , Glycolates/urine , Hydroxyproline/metabolism , Hyperoxaluria, Primary/metabolism , Oxalates/metabolism , Oxalates/urine , Oxidoreductases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Calcium/metabolism , Disease Models, Animal , Female , Humans , Kidney/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proline Oxidase/metabolism
8.
Molecules ; 24(20)2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31614728

ABSTRACT

Cannabinoid receptor interacting protein 1a (CRIP1a) is an important CB1 cannabinoid receptor-associated protein, first identified from a yeast two-hybrid screen to modulate CB1-mediated N-type Ca2+ currents. In this paper we review studies of CRIP1a function and structure based upon in vitro experiments and computational chemistry, which elucidate the specific mechanisms for the interaction of CRIP1a with CB1 receptors. N18TG2 neuronal cells overexpressing or silencing CRIP1a highlighted the ability of CRIP1 to regulate cyclic adenosine 3',5'monophosphate (cAMP) production and extracellular signal-regulated kinase (ERK1/2) phosphorylation. These studies indicated that CRIP1a attenuates the G protein signaling cascade through modulating which Gi/o subtypes interact with the CB1 receptor. CRIP1a also attenuates CB1 receptor internalization via ß-arrestin, suggesting that CRIP1a competes for ß-arrestin binding to the CB1 receptor. Predictions of CRIP1a secondary structure suggest that residues 34-110 are minimally necessary for association with key amino acids within the distal C-terminus of the CB1 receptor, as well as the mGlu8a metabotropic glutamate receptor. These interactions are disrupted through phosphorylation of serines and threonines in these regions. Through investigations of the function and structure of CRIP1a, new pharmacotherapies based upon the CRIP-CB1 receptor interaction can be designed to treat diseases such as epilepsy, motor dysfunctions and schizophrenia.


Subject(s)
Cannabinoids/metabolism , Carrier Proteins/genetics , Receptor, Cannabinoid, CB1/genetics , Cannabinoids/genetics , Carrier Proteins/chemistry , Epilepsy/drug therapy , Epilepsy/genetics , Humans , MAP Kinase Signaling System , Membrane Proteins , Motor Disorders/drug therapy , Motor Disorders/genetics , Neurons/metabolism , Neurons/pathology , Phosphorylation/drug effects , Schizophrenia/drug therapy , Schizophrenia/genetics , Signal Transduction/drug effects , beta-Arrestins/genetics , beta-Arrestins/metabolism
9.
Free Radic Biol Med ; 141: 492-501, 2019 09.
Article in English | MEDLINE | ID: mdl-31323313

ABSTRACT

Peroxiredoxins (Prx) are enzymes that efficiently reduce hydroperoxides through active participation of cysteine residues (CP, CR). The first step in catalysis, the reduction of peroxide substrate, is fast, 107 - 108 M-1s-1 for human Prx2. In addition, the high intracellular concentration of Prx positions them not only as good antioxidants but also as central players in redox signaling pathways. These biological functions can be affected by post-translational modifications that could alter the peroxidase activity and/or interaction with other proteins. In particular, inactivation by hyperoxidation of CP, which occurs when a second molecule of peroxide reacts with the CP in the sulfenic acid form, modulates their participation in redox signaling pathways. The higher sensitivity to hyperoxidation of some Prx has been related to the presence of structural motifs that disfavor disulfide formation at the active site, making the CP sulfenic acid more available for hyperoxidation or interaction with a redox protein target. We previously reported that treatment of human Prx2 with peroxynitrite results in tyrosine nitration, a post-translational modification on non-catalytic residues, yielding a more active peroxidase with higher resistance to hyperoxidation. In this work, studies on various mutants of hPrx2 confirm that the presence of the tyrosyl side-chain of Y193, belonging to the C-terminal YF motif of eukaryotic Prx, is necessary to observe the increase in Prx2 resistance to hyperoxidation. Moreover, our results underline the critical role of this structural motif on the rate of disulfide formation that determines the differential participation of Prx in redox signaling pathways.


Subject(s)
Oxidation-Reduction , Peroxiredoxins/genetics , Protein Processing, Post-Translational/genetics , Tyrosine/genetics , Catalytic Domain/genetics , Cysteine/genetics , Disulfides/chemistry , Humans , Mutation/genetics , Nitrates/metabolism , Peroxidase/genetics , Peroxides/metabolism , Peroxiredoxins/drug effects , Peroxiredoxins/metabolism , Peroxynitrous Acid/pharmacology , Signal Transduction/drug effects
10.
Chem Res Toxicol ; 32(3): 474-483, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30701970

ABSTRACT

To prevent the accumulation of reactive oxygen species and limit associated damage to biological macromolecules, cells express a variety of oxidant-detoxifying enzymes, including peroxiredoxins. In Saccharomyces cerevisiae, the peroxiredoxin Tsa1 plays a key role in peroxide clearance and maintenance of genome stability. Five homodimers of Tsa1 can assemble into a toroid-shaped decamer, with the active sites in the enzyme being shared between individual dimers in the decamer. Here, we have examined whether two conserved aromatic residues at the decamer-building interface promote Tsa1 oligomerization, enzymatic activity, and biological function. When substituting either or both of these aromatic residues at the decamer-building interface with either alanine or leucine, we found that the Tsa1 decamer is destabilized, favoring dimeric species instead. These proteins exhibit varying abilities to rescue the phenotypes of oxidant sensitivity and genomic instability in yeast lacking Tsa1 and Tsa2, with the individual leucine substitutions at this interface partially complementing the deletion phenotypes. The ability of Tsa1 decamer interface variants to partially rescue peroxidase function in deletion strains is temperature-dependent and correlates with their relative rate of reactivity with hydrogen peroxide and their ability to interact with thioredoxin. Based on the combined results of in vitro and in vivo assays, our findings indicate that multiple steps in the catalytic cycle of Tsa1 may be impaired by introducing substitutions at its decamer-building interface, suggesting a multifaceted biological basis for its assembly into decamers.


Subject(s)
Peroxidases/chemistry , Peroxidases/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Dimerization , Models, Molecular , Software
11.
Antioxidants (Basel) ; 8(1)2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30609657

ABSTRACT

Peroxiredoxins have a long-established cellular function as regulators of redox metabolism by catalyzing the reduction of peroxides (e.g., H2O2, lipid peroxides) with high catalytic efficiency. This activity is also critical to the initiation and relay of both phosphorylation and redox signaling in a broad range of pathophysiological contexts. Under normal physiological conditions, peroxiredoxins protect normal cells from oxidative damage that could promote oncogenesis (e.g., environmental stressors). In cancer, higher expression level of peroxiredoxins has been associated with both tumor growth and resistance to radiation therapies. However, this relationship between the expression of peroxiredoxins and the response to radiation is not evident from an analysis of data in The Cancer Genome Atlas (TCGA) or NCI60 panel of cancer cell lines. The focus of this review is to summarize the current experimental knowledge implicating this class of proteins in cancer, and to provide a perspective on the value of targeting peroxiredoxins in the management of cancer. Potential biases in the analysis of the TCGA data with respect to radiation resistance are also highlighted.

12.
Nat Chem Biol ; 14(11): 995-1004, 2018 11.
Article in English | MEDLINE | ID: mdl-30177848

ABSTRACT

Cysteine sulfinic acid or S-sulfinylation is an oxidative post-translational modification (OxiPTM) that is known to be involved in redox-dependent regulation of protein function but has been historically difficult to analyze biochemically. To facilitate the detection of S-sulfinylated proteins, we demonstrate that a clickable, electrophilic diazene probe (DiaAlk) enables capture and site-centric proteomic analysis of this OxiPTM. Using this workflow, we revealed a striking difference between sulfenic acid modification (S-sulfenylation) and the S-sulfinylation dynamic response to oxidative stress, which is indicative of different roles for these OxiPTMs in redox regulation. We also identified >55 heretofore-unknown protein substrates of the cysteine sulfinic acid reductase sulfiredoxin, extending its function well beyond those of 2-cysteine peroxiredoxins (2-Cys PRDX1-4) and offering new insights into the role of this unique oxidoreductase as a central mediator of reactive oxygen species-associated diseases, particularly cancer. DiaAlk therefore provides a novel tool to profile S-sulfinylated proteins and study their regulatory mechanisms in cells.


Subject(s)
Cysteine/analogs & derivatives , Nitrogen/chemistry , Oxidoreductases Acting on Sulfur Group Donors/chemistry , Protein Processing, Post-Translational , Proteomics/methods , A549 Cells , Cysteine/chemistry , Epitopes/chemistry , HEK293 Cells , HeLa Cells , Humans , Oxidation-Reduction , Oxidative Stress , Peptides/chemistry , Peroxiredoxins , Reactive Oxygen Species/chemistry , Recombinant Proteins/chemistry , Sulfenic Acids
13.
J Biol Chem ; 293(30): 11901-11912, 2018 07 27.
Article in English | MEDLINE | ID: mdl-29884768

ABSTRACT

2-Cys peroxiredoxins (Prxs) modulate hydrogen peroxide (H2O2)-mediated cell signaling. At high H2O2 levels, eukaryotic Prxs can be inactivated by hyperoxidation and are classified as sensitive Prxs. In contrast, prokaryotic Prxs are categorized as being resistant to hyperoxidation and lack the GGLG and C-terminal YF motifs present in the sensitive Prxs. Additional molecular determinants that account for the subtle differences in the susceptibility to hyperoxidation remain to be identified. A comparison of a new, 2.15-Å-resolution crystal structure of Prx2 in the oxidized, disulfide-bonded state with the hyperoxidized structure of Prx2 and Prx1 in complex with sulfiredoxin revealed three structural regions that rearrange during catalysis. With these regions in hand, focused sequence analyses were performed comparing sensitive and resistant Prx groups. From this combinatorial approach, we discovered two novel hyperoxidation resistance motifs, motifs A and B, which were validated using mutagenesis of sensitive human Prxs and resistant Salmonella enterica serovar Typhimurium AhpC. Introduction and removal of these motifs, respectively, resulted in drastic changes in the sensitivity to hyperoxidation with Prx1 becoming 100-fold more resistant to hyperoxidation and AhpC becoming 800-fold more sensitive to hyperoxidation. The increased sensitivity of the latter AhpC variant was also confirmed in vivo These results support the function of motifs A and B as primary drivers for tuning the sensitivity of Prxs to different levels of H2O2, thus enabling the initiation of variable signaling or antioxidant responses in cells.


Subject(s)
Peroxiredoxins/chemistry , Amino Acid Motifs , Amino Acid Sequence , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Humans , Hydrogen Peroxide/metabolism , Models, Molecular , Oxidation-Reduction , Peroxiredoxins/metabolism
14.
J Am Soc Nephrol ; 29(6): 1615-1623, 2018 06.
Article in English | MEDLINE | ID: mdl-29588429

ABSTRACT

Background Endogenous oxalate synthesis contributes to calcium oxalate stone disease and is markedly increased in the inherited primary hyperoxaluria (PH) disorders. The incomplete knowledge regarding oxalate synthesis complicates discovery of new treatments. Hydroxyproline (Hyp) metabolism results in the formation of oxalate and glycolate. However, the relative contribution of Hyp metabolism to endogenous oxalate and glycolate synthesis is not known.Methods To define this contribution, we performed primed, continuous, intravenous infusions of the stable isotope [15N,13C5]-Hyp in nine healthy subjects and 19 individuals with PH and quantified the levels of urinary 13C2-oxalate and 13C2-glycolate formed using ion chromatography coupled to mass detection.Results The total urinary oxalate-to-creatinine ratio during the infusion was 73.1, 70.8, 47.0, and 10.6 mg oxalate/g creatinine in subjects with PH1, PH2, and PH3 and controls, respectively. Hyp metabolism accounted for 12.8, 32.9, and 14.8 mg oxalate/g creatinine in subjects with PH1, PH2, and PH3, respectively, compared with 1.6 mg oxalate/g creatinine in controls. The contribution of Hyp to urinary oxalate was 15% in controls and 18%, 47%, and 33% in subjects with PH1, PH2, and PH3, respectively. The contribution of Hyp to urinary glycolate was 57% in controls, 30% in subjects with PH1, and <13% in subjects with PH2 or PH3.Conclusions Hyp metabolism differs among PH types and is a major source of oxalate synthesis in individuals with PH2 and PH3. In patients with PH1, who have the highest urinary excretion of oxalate, the major sources of oxalate remain to be identified.


Subject(s)
Glycolates/urine , Hydroxyproline/metabolism , Hyperoxaluria, Primary/metabolism , Oxalic Acid/urine , Adult , Creatinine/urine , Female , Humans , Hyperoxaluria, Primary/urine , Male , Middle Aged , Young Adult
15.
ACS Chem Biol ; 12(8): 2201-2208, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28687042

ABSTRACT

The selective reaction of chemical reagents with reduced protein thiols is critical to biological research. This reaction is utilized to prevent cross-linking of cysteine-containing peptides in common proteomics workflows and is applied widely in discovery and targeted redox investigations of the mechanisms underlying physiological and pathological processes. However, known and commonly used thiol blocking reagents like iodoacetamide, N-ethylmaleimide, and others were found to cross-react with oxidized protein sulfenic acids (-SOH) introducing significant errors in studies employing these reagents. We have investigated and are reporting here a new heteroaromatic alkylsulfone, 4-(5-methanesulfonyl-[1,2,3,4]tetrazol-1-yl)-phenol (MSTP), as a selective and highly reactive -SH blocking reagent compatible with biological applications.


Subject(s)
Drug Discovery , Phenols/chemistry , Sulfones/chemistry , Tetrazoles/chemistry , Cell Line, Tumor , Cell Membrane/drug effects , Humans , Mass Spectrometry , Models, Biological , Molecular Structure , Sulfhydryl Reagents/chemistry , Sulfhydryl Reagents/pharmacokinetics , Sulfhydryl Reagents/pharmacology , Sulfones/pharmacokinetics , Sulfones/pharmacology
16.
Mol Pharmacol ; 91(2): 75-86, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27895162

ABSTRACT

Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1R) distal C-terminal-associated protein that alters CB1R interactions with G-proteins. We tested the hypothesis that CRIP1a is capable of also altering CB1R interactions with ß-arrestin proteins that interact with the CB1R at the C-terminus. Coimmunoprecipitation studies indicated that CB1R associates in complexes with either CRIP1a or ß-arrestin, but CRIP1a and ß-arrestin fail to coimmunoprecipitate with each other. This suggests a competition for CRIP1a and ß-arrestin binding to the CB1R, which we hypothesized could attenuate the action of ß-arrestin to mediate CB1R internalization. We determined that agonist-mediated reduction of the density of cell surface endogenously expressed CB1Rs was clathrin and dynamin dependent and could be modeled as agonist-induced aggregation of transiently expressed GFP-CB1R. CRIP1a overexpression attenuated CP55940-mediated GFP-CB1R as well as endogenous ß-arrestin redistribution to punctae, and conversely, CRIP1a knockdown augmented ß-arrestin redistribution to punctae. Peptides mimicking the CB1R C-terminus could bind to both CRIP1a in cell extracts as well as purified recombinant CRIP1a. Affinity pull-down studies revealed that phosphorylation at threonine-468 of a CB1R distal C-terminus 14-mer peptide reduced CB1R-CRIP1a association. Coimmunoprecipitation of CB1R protein complexes demonstrated that central or distal C-terminal peptides competed for the CB1R association with CRIP1a, but that a phosphorylated central C-terminal peptide competed for association with ß-arrestin 1, and phosphorylated central or distal C-terminal peptides competed for association with ß-arrestin 2. Thus, CRIP1a can compete with ß-arrestins for interaction with C-terminal CB1R domains that could affect agonist-driven, ß-arrestin-mediated internalization of the CB1R.


Subject(s)
Carrier Proteins/metabolism , Receptor, Cannabinoid, CB1/metabolism , beta-Arrestins/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Green Fluorescent Proteins/metabolism , Humans , Membrane Proteins , Peptides/chemistry , Phosphorylation , Protein Binding , Rats
17.
Mol Pharm ; 13(3): 720-8, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26824142

ABSTRACT

Fatty acid synthase (FASN), the enzyme that catalyzes de novo synthesis of fatty acids, is expressed in many cancer types. Its potential as a therapeutic target is well recognized, but inhibitors of FASN have not yet been approved for cancer therapy. Orlistat (ORL), an FDA-approved lipase inhibitor, is also an effective inhibitor of FASN. However, ORL is extremely hydrophobic and has low systemic uptake after oral administration. Thus, new strategies are required to formulate ORL for cancer treatment as a FASN inhibitor. Here, we report the development of a nanoparticle (NP) formulation of ORL using amphiphilic bioconjugates that are derived from hyaluronic acid (HA), termed Nano-ORL. The NPs were loaded with up to 20 wt % weight of ORL at greater than 95% efficiency. The direct inhibition of the human recombinant thioesterase domain of FASN by ORL extracted from Nano-ORL was similar to that of stock ORL. Nano-ORL demonstrated a similar ability to inhibit cellular FASN activity when compared to free ORL, as demonstrated by analysis of (14)C-acetate incorporation into lipids. Nano-ORL treatment also disrupted mitochondrial function similarly to ORL by reducing adenosine triphosphate turnover in MDA-MB-231 and LNCaP cells. Nano-ORL demonstrated increased potency compared to ORL toward prostate and breast cancer cells. Nano-ORL decreased viability of human prostate and breast cancer cell lines to 55 and 57%, respectively, while free ORL decreased viability to 71 and 79% in the same cell lines. Moreover, Nano-ORL retained cytotoxic activity after a 24 h preincubation in aqueous conditions. Preincubation of ORL dramatically reduced the efficacy of ORL as indicated by high cell viability (>85%) in both breast and prostate cell lines. These data demonstrate that NP formulation of ORL using HA-derived polymers retains similar levels of FASN, lipid synthesis, and ATP turnover inhibition while significantly improving the cytotoxic activity against cancer cell lines.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , Fatty Acid Synthases/antagonists & inhibitors , Lactones/pharmacology , Nanoparticles/chemistry , Prostatic Neoplasms/pathology , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Drug Compounding , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Fatty Acid Synthesis Inhibitors/administration & dosage , Fatty Acid Synthesis Inhibitors/pharmacology , Female , Humans , Lactones/administration & dosage , Male , Mitochondria/drug effects , Mitochondria/enzymology , Nanoparticles/administration & dosage , Orlistat , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Tumor Cells, Cultured
18.
Biochem J ; 473(4): 411-21, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26614766

ABSTRACT

Mammalian 2-cysteine peroxiredoxins (Prxs) are susceptible to hyperoxidation by excess H2O2. The cytoplasmic family member Prx2 hyperoxidizes more readily than mitochondrial Prx3 due to slower dimerization of the sulfenic acid (SpOH) intermediate. Four variant amino acids near the C-terminus have been shown to contribute to this difference. We have performed kinetic analysis of the relationship between hyperoxidation and disulfide formation, using whole-protein MS and comparing wild-type (WT) Prx2 and Prx3 with tail-swap mutants in which the four amino acids were reversed. These changes make Prx3 more sensitive and Prx2 less sensitive to hyperoxidation and accounted for ∼70% of the difference between the two proteins. The tail swap mutant of Prx3 was also more susceptible when expressed in the mitochondria of HeLa cells. The hyperoxidized product at lower excesses of H2O2 was a semi-hyperoxidized dimer with one active site disulfide and the other a sulfinic acid. For Prx2, increasing the H2O2 concentration resulted in complete hyperoxidation. In contrast, only approximately half the Prx3 active sites underwent hyperoxidation and, even with high H2O2, the predominant product was the hyperoxidized dimer. Size exclusion chromatography (SEC) showed that the oligomeric forms of all redox states of Prx3 dissociated more readily into dimeric units than their Prx2 counterparts. Notably the species with one disulfide and one hyperoxidized active site was decameric for Prx2 and dimeric for Prx3. Reduction and re-oxidation of the hyperoxidized dimer of Prx3 produced hyperoxidized monomers, implying dissociation and rearrangement of the subunits of the functional homodimer.


Subject(s)
Peroxiredoxin III/metabolism , Peroxiredoxins/metabolism , Amino Acid Sequence , HeLa Cells , Humans , Kinetics , Molecular Sequence Data , Mutation , Oxidation-Reduction , Peroxiredoxin III/chemistry , Peroxiredoxin III/genetics , Peroxiredoxins/chemistry , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
19.
J Biol Chem ; 291(7): 3520-30, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26663084

ABSTRACT

The type I fatty acid synthase (FASN) is responsible for the de novo synthesis of palmitate. Chain length selection and release is performed by the C-terminal thioesterase domain (TE1). FASN expression is up-regulated in cancer, and its activity levels are controlled by gene dosage and transcriptional and post-translational mechanisms. In addition, the chain length of fatty acids produced by FASN is controlled by a type II thioesterase called TE2 (E.C. 3.1.2.14). TE2 has been implicated in breast cancer and generates a broad lipid distribution within milk. The molecular basis for the ability of the TE2 to compete with TE1 for the acyl chain attached to the acyl carrier protein (ACP) domain of FASN is unknown. Herein, we show that human TE1 efficiently hydrolyzes acyl-CoA substrate mimetics. In contrast, TE2 prefers an engineered human acyl-ACP substrate and readily releases short chain fatty acids from full-length FASN during turnover. The 2.8 Å crystal structure of TE2 reveals a novel capping domain insert within the α/ß hydrolase core. This domain is reminiscent of capping domains of type II thioesterases involved in polyketide synthesis. The structure also reveals that the capping domain had collapsed onto the active site containing the Ser-101-His-237-Asp-212 catalytic triad. This observation suggests that the capping domain opens to enable the ACP domain to dock and to place the acyl chain and 4'-phosphopantetheinyl-linker arm correctly for catalysis. Thus, the ability of TE2 to prematurely release fatty acids from FASN parallels the role of editing thioesterases involved in polyketide and non-ribosomal peptide synthase synthases.


Subject(s)
Acyl Coenzyme A/metabolism , Fatty Acid Synthase, Type I/metabolism , Models, Molecular , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/genetics , Acyl Carrier Protein/metabolism , Acyl Coenzyme A/chemistry , Binding Sites , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Fatty Acid Synthase, Type I/chemistry , Fatty Acids, Volatile/chemistry , Fatty Acids, Volatile/metabolism , Humans , Hydrolysis , Molecular Weight , Palmitoyl Coenzyme A/chemistry , Palmitoyl Coenzyme A/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Engineering , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity
20.
PLoS One ; 10(5): e0127310, 2015.
Article in English | MEDLINE | ID: mdl-26011724

ABSTRACT

Dysregulation of signaling pathways and energy metabolism in cancer cells enhances production of mitochondrial hydrogen peroxide that supports tumorigenesis through multiple mechanisms. To counteract the adverse effects of mitochondrial peroxide many solid tumor types up-regulate the mitochondrial thioredoxin reductase 2--thioredoxin 2 (TRX2)--peroxiredoxin 3 (PRX3) antioxidant network. Using malignant mesothelioma cells as a model, we show that thiostrepton (TS) irreversibly disables PRX3 via covalent crosslinking of peroxidatic and resolving cysteine residues in homodimers, and that targeting the oxidoreductase TRX2 with the triphenylmethane gentian violet (GV) potentiates adduction by increasing levels of disulfide-bonded PRX3 dimers. Due to the fact that activity of the PRX3 catalytic cycle dictates the rate of adduction by TS, immortalized and primary human mesothelial cells are significantly less sensitive to both compounds. Moreover, stable knockdown of PRX3 reduces mesothelioma cell proliferation and sensitivity to TS. Expression of catalase in shPRX3 mesothelioma cells restores defects in cell proliferation but not sensitivity to TS. In a SCID mouse xenograft model of human mesothelioma, administration of TS and GV together reduced tumor burden more effectively than either agent alone. Because increased production of mitochondrial hydrogen peroxide is a common phenotype of malignant cells, and TS and GV are well tolerated in mammals, we propose that targeting PRX3 is a feasible redox-dependent strategy for managing mesothelioma and other intractable human malignancies.


Subject(s)
Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mesothelioma/drug therapy , Mesothelioma/metabolism , Mitochondria/metabolism , Peroxides/metabolism , Peroxiredoxin III/metabolism , Thiostrepton/pharmacology , Animals , Catalase/metabolism , Cell Proliferation/drug effects , Epithelium/drug effects , Epithelium/metabolism , Humans , Male , Mesothelioma, Malignant , Mice , Mice, SCID , Mitochondria/drug effects , Oxidation-Reduction/drug effects , Rats , Signal Transduction/drug effects , Signal Transduction/physiology , Thioredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...