Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38293213

ABSTRACT

Targeted protein degradation utilizing a bifunctional molecule to initiate ubiquitination and subsequent degradation by the 26S proteasome has been shown to be a powerful therapeutic intervention. Many bifunctional molecules, including covalent and non-covalent ligands to proteins of interest, have been developed. The traditional target protein degradation methodology targets the protein of interest in both healthy and diseased cell populations, and a therapeutic window is obtained based on the overexpression of the targeted protein. We report here a series of bifunctional degraders that do not rely on interacting with an E3 ligase, but rather a 26S proteasome subunit, which we have named ByeTACs: Bypassing E3 Targeting Chimeras. Rpn-13 is a non-essential ubiquitin receptor for the 26S proteasome. Cells under significant stress or require significant ubiquitin-dependent degradation of proteins for survival, incorporate Rpn-13 in the 26S to increase protein degradation rates. The targeted protein degraders reported here are bifunctional molecules that include a ligand to Rpn-13 and BRD4, the protein of interest we wish to degrade. We synthesized a suite of degraders with varying PEG chain lengths and showed that bifunctional molecules that incorporate a Rpn-13 binder (TCL1) and a BRD4 binder (JQ1) with a PEG linker of 3 or 4 units are the most effective to induce BRD4 degradation. We also demonstrate that our new targeted protein degraders are dependent upon proteasome activity and Rpn-13 expression levels. This establishes a new mechanism of action for our ByeTACs that can be employed for the targeted degradation of a wide variety of protein substrates.

2.
Bioorg Med Chem Lett ; 95: 129485, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37714498

ABSTRACT

The ubiquitin-proteasome system serves as the major proteolytic degradation pathway in eukaryotic cells. Many inhibitors that covalently bind to the proteasome's active sites have been developed for hematological cancers, but resistance can arise in patients. To overcome limitations of active-site proteasome inhibitors, we and others have focused on developing ligands that target subunits on the 19S regulatory particle (19S RP). One such 19S RP subunit, Rpn-13, is a ubiquitin receptor required for hematological cancers to rapidly degrade proteins to avoid apoptosis. Reported Rpn-13 inhibitors covalently bind to the Rpn-13's Pru domain and have been effective anti-hematological cancer agents. Here, we describe the discovery of TCL-1, a non-covalent binder to the Pru domain. Optimization of TCL-1's carboxylate group to an ester increases its cytotoxicity in hematological cancer cell lines. Altogether, our data provides a new scaffold for future medicinal chemistry optimization to target Rpn-13 therapeutically.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Humans , Proteasome Endopeptidase Complex/metabolism , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ubiquitin/metabolism , Hematologic Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...