Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(2): e0190058, 2018.
Article in English | MEDLINE | ID: mdl-29444087

ABSTRACT

Immune clearance of Hepatitis B virus (HBV) is characterized by broad and robust antiviral T cell responses, while virus-specific T cells in chronic hepatitis B (CHB) are rare and exhibit immune exhaustion that includes programmed-death-1 (PD-1) expression on virus-specific T cells. Thus, an immunotherapy able to expand and activate virus-specific T cells may have therapeutic benefit for CHB patients. Like HBV-infected patients, woodchucks infected with woodchuck hepatitis virus (WHV) can have increased hepatic expression of PD-1-ligand-1 (PD-L1), increased PD-1 on CD8+ T cells, and a limited number of virus-specific T cells with substantial individual variation in these parameters. We used woodchucks infected with WHV to assess the safety and efficacy of anti-PD-L1 monoclonal antibody therapy (αPD-L1) in a variety of WHV infection states. Experimentally-infected animals lacked PD-1 or PD-L1 upregulation compared to uninfected controls, and accordingly, αPD-L1 treatment in lab-infected animals had limited antiviral effects. In contrast, animals with naturally acquired WHV infections displayed elevated PD-1 and PD-L1. In these same animals, combination therapy with αPD-L1 and entecavir (ETV) improved control of viremia and antigenemia compared to ETV treatment alone, but with efficacy restricted to a minority of animals. Pre-treatment WHV surface antigen (sAg) level was identified as a statistically significant predictor of treatment response, while PD-1 expression on peripheral CD8+ T cells, T cell production of interferon gamma (IFN-γ) upon in vitro antigen stimulation (WHV ELISPOT), and circulating levels of liver enzymes were not. To further assess the safety of this strategy, αPD-L1 was tested in acute WHV infection to model the risk of liver damage when the extent of hepatic infection and antiviral immune responses were expected to be the greatest. No significant increase in serum markers of hepatic injury was observed over those in infected, untreated control animals. These data support a positive benefit/risk assessment for blockade of the PD-1:PD-L1 pathway in CHB patients and may help to identify patient groups most likely to benefit from treatment. Furthermore, the efficacy of αPD-L1 in only a minority of animals, as observed here, suggests that additional agents may be needed to achieve a more robust and consistent response leading to full sAg loss and durable responses through anti-sAg antibody seroconversion.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/immunology , Disease Models, Animal , Hepatitis B/therapy , Animals , Antibodies, Monoclonal/adverse effects , Marmota
2.
Toxicol Pathol ; 33(1): 86-91, 2005.
Article in English | MEDLINE | ID: mdl-15805059

ABSTRACT

Laser scanning cytometry (LSC) is a new technology that combines the properties and advantages of flow cytometry (FC) and immunohistochemistry (IHC), thus providing qualitative and quantitative information on protein expression with the additional perspective provided by cell and tissue localization. Formalin-fixed, paraffin embedded liver sections from rats exposed to a Peroxisome Proliferator Activated Receptor (PPAR) agonist were stained with antibodies against peroxisomal targeting signal-1 (PTS-1) (a highly conserved tripeptide contained within all peroxisomal enzymes), Acyl CoA oxidase (AOX) (the rate limiting enzyme of peroxisomal beta oxidation), and catalase (an inducible peroxisomal antioxidant enzyme) to evaluate peroxisomal beta oxidation, oxidative stress, and peroxisome proliferation. The LSC showed increased AOX, catalase, and PTS-1 expression in centrilobular hepatocytes that correlated favorably with the microscopic observation of centrilobular hepatocellular hypertrophy and with the palmitoyl CoA biochemical assay for peroxisomal beta oxidation, and provided additional morphologic information about peroxisome proliferation and tissue patterns of activation. Therefore, the LSC provides qualitative and quantitative evaluation of peroxisome activity with similar sensitivity but higher throughput than the traditional biochemical methods. The additional benefits of the LSC include the direct correlation between histopathologic observations and peroxisomal alterations and the potential utilization of archived formalin-fixed tissues from a variety of organs and species.


Subject(s)
Laser Scanning Cytometry , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferators/toxicity , Peroxisomes/metabolism , Acyl-CoA Oxidase/metabolism , Animals , Catalase/metabolism , Dose-Response Relationship, Drug , Female , Liver/metabolism , Male , Oxidation-Reduction , Palmitoyl Coenzyme A/metabolism , Peroxisomes/drug effects , Rats , Rats, Sprague-Dawley , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...