Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 91(3): 1350-61, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23230120

ABSTRACT

Two experiments were conducted to evaluate effects of corn dry distiller grains plus condensed solubles (DDGS) supplementation level on performance digestion characteristics of steers grazing native range during the forage growing season. In the performance study, 72 (206 ± 23.6 kg; 2008) and 60 (230 ± 11.3 kg; 2009) English crossbred steer calves were used in a randomized complete block design replicated over 2 yr. The grazing periods lasted 56 and 58 d and started on August 11 and 18 for 2008 and 2009, respectively. Each year, steers were blocked by BW (light, medium, and heavy), stratified by BW within blocks, and randomly assigned to 1 of 4 grazing groups. Each grazing group (6 steers in 2008 and 5 in 2009) was assigned to a DDGS supplementation levels (0, 0.2, 0.4, and 0.6% BW). Grazing group served as the experimental unit with 12 groups per year receiving 1 of 4 treatments for 2 yr (n = 6). In the metabolism study, 16 English crossbred steers (360 ± 28.9 kg) fitted with ruminal cannulas grazing native range during the summer growing season were used in a completely randomized design to evaluate treatment effects on forage intake and digestion. The experiment was conducted during the first and second weeks of October 2008. Steers were randomly assigned to supplement level (0, 0.2, 0.4, and 0.6% BW; n = 4) and grazed a single native range pasture with supplements offered individually once daily at 0700 h. In the performance study, ADG (0.64, 0.75, 0.80, and 0.86 ± 0.03 kg/d for 0, 0.2, 0.4, and 0.6% BW, respectively) increased linearly (P = 0.01) with increasing DDGS supplementation level. In the metabolism study, forage OM, NDF, CP, and ether extract (EE) intake decreased (P ≤ 0.05) linearly with increasing DDGS supplementation level. Total CP and EE intake increased (P ≤ 0.002) with increasing DDGS supplementation level. Digestibility of OM, NDF, and EE increased (linear; P ≤ 0.008) whereas the soluble CP fraction of forage masticate sample linearly increased (P = 0.01) and slowly degradable CP fraction linearly decreased (P = 0.05) with increasing DDGS supplementation level. Forage in situ masticate DM and NDF disappearance rate decreased (quadratic; P ≤ 0.05) and DDGS in situ DM disappearance rate increased (linear; P = 0.03) with increasing supplementation levels. These results indicate that DDGS supplementation enhanced grazing performance and total-tract digestion of steers grazing native range during the forage growing season.


Subject(s)
Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Cattle/physiology , Dietary Supplements , Zea mays , Animals , Cattle/growth & development , Diet/veterinary , Digestion , Dose-Response Relationship, Drug , Eating , Male , New Mexico , Random Allocation , Seasons
2.
J Anim Sci ; 86(10): 2749-55, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18539841

ABSTRACT

Three studies were conducted to evaluate the feeding value of slice alfalfa hay in feedlot diets. In Exp. 1, 108 steer calves (183.1 +/- 1.2 kg initial BW; 6 pens/treatment) were used in a completely randomized design to evaluate the effect of baling method on performance and morbidity of newly received calves. The study lasted 28 d. Treatments consisted of a 65% concentrate receiving diet containing 1) ground or 2) slice alfalfa hay. Steer calves were fed daily at 0800 h. Animals also received long-stem sudangrass hay the first 7 d. Steers were weighed on d 0, 16, and 28. Feed, sudangrass hay, or feed plus sudangrass hay intakes were not affected (P > 0.25) by treatment. Conversely, ADG from d 0 to 16 was greater (P < 0.001) for slice than ground (1.27 vs. 0.81 +/- 0.067 kg/d, respectively) and from d 0 to 28 (1.23 vs. 0.91 +/- 0.042 kg/d, respectively). In addition, G:F was greater (P < 0.001) for slice than ground hay from d 0 to 16 (0.39 vs. 0.25 +/- 0.021), and from d 0 to 28 (0.31 vs. 0.24 +/- 0.013 for slice and ground, respectively). Moreover, morbidity (40.5 +/- 3.9%; P = 0.20) and retreatment rates (30.7 +/- 7.5%; P = 0.14) were similar for slice and ground. In Exp. 2, 176 crossbred steers (393.9 +/- 10.8 kg initial BW) were used in an 84-d feeding experiment (4 pens/treatment) in a randomized complete block experimental design with a 2 x 2 factorial arrangement of treatments to evaluate effects of alfalfa baling method (ground or slice) and forage level (8 or 14%) on growth performance. Experimental diets were based on steam-flaked corn. Daily BW gain was greater (P = 0.10) for steers consuming ground compared with the slice hay diet. A baling method x forage level interaction (P = 0.07) was observed for DMI. Baling method did not (P = 0.98) influence DMI with 8% roughage level. But with 14% roughage, DMI was greater (P = 0.02) for steers consuming ground hay than the slice diet. The G:F ratio was affected (P = 0.03) only by forage level (0.194 vs. 0.182 +/- 0.003 for 8 and 14% roughage, respectively). In Exp. 3, 4 ruminally cannulated mixed-breed steers were used in a 4 x 4 Latin square design to evaluate effects on digestive function. No baling method effects (P >or= 0.16) were detected for DM, OM, CP, or NDF intakes or DM, OM, and NDF total tract digestibility. Digestibility of NDF and OM were greater (P

Subject(s)
Animal Feed/analysis , Cattle/growth & development , Diet/veterinary , Medicago sativa/chemistry , Animal Nutritional Physiological Phenomena , Animals , Body Composition/physiology , Digestion , Housing, Animal , Male , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...