Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328187

ABSTRACT

A fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight junctions, but its ability to improve gene transfer has not been investigated. Here we asked if increasing the concentration of NaCl enhances the transduction efficiency of three gene therapy vectors: adenovirus, AAV, and lentiviral vectors. Vectors formulated with 3-7% NaCl exhibited markedly increased transduction for all three platforms, leading to anion channel correction in primary cultures of human CF epithelial cells and enhanced gene transfer in mouse and pig airways in vivo. The mechanism of transduction enhancement involved tonicity but not osmolarity or pH. Formulating vectors with a high ionic strength solution is a simple strategy to greatly enhance efficacy and immediately improve preclinical or clinical applications.

2.
Nucleic Acids Res ; 46(18): 9591-9600, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30165523

ABSTRACT

Cystic fibrosis (CF) is a common genetic disease caused by mutations in the gene coding for cystic fibrosis transmembrane conductance regulator (CFTR). Although CF affects multiple organ systems, chronic bacterial infections and inflammation in the lung are the leading causes of morbidity and mortality in people with CF. Complementation with a functional CFTR gene repairs this defect, regardless of the disease-causing mutation. In this study, we used a gene delivery system termed piggyBac/adenovirus (Ad), which combines the delivery efficiency of an adenoviral-based vector with the persistent expression of a DNA transposon-based vector. We aerosolized piggyBac/Ad to the airways of pigs and observed widespread pulmonary distribution of vector. We quantified the regional distribution in the airways and observed transduction of large and small airway epithelial cells of non-CF pigs, with ∼30-50% of surface epithelial cells positive for GFP. We transduced multiple cell types including ciliated, non-ciliated, basal, and submucosal gland cells. In addition, we phenotypically corrected CF pigs following delivery of piggyBac/Ad expressing CFTR as measured by anion channel activity, airway surface liquid pH, and bacterial killing ability. Combining an integrating DNA transposon with adenoviral vector delivery is an efficient method for achieving functional CFTR correction from a single vector administration.


Subject(s)
Adenoviridae/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/therapy , DNA Transposable Elements/genetics , Genetic Therapy/methods , Lung/metabolism , Aerosols/administration & dosage , Aerosols/pharmacokinetics , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/administration & dosage , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Genetic Vectors/pharmacokinetics , Phenotype , Respiratory Mucosa/metabolism , Swine , Tissue Distribution , Treatment Outcome
3.
Hum Gene Ther ; 23(6): 658-65, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22486314

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors have clear potential for use in gene targeting but low correction efficiencies remain the primary drawback. One approach to enhancing efficiency is a block of undesired repair pathways like nonhomologous end joining (NHEJ) to promote the use of homologous recombination. The natural product vanillin acts as a potent inhibitor of NHEJ by inhibiting DNA-dependent protein kinase (DNA-PK). Using a homology containing rAAV vector, we previously demonstrated in vivo gene repair frequencies of up to 0.1% in a model of liver disease hereditary tyrosinemia type I. To increase targeting frequencies, we administered vanillin in combination with rAAV. Gene targeting frequencies increased up to 10-fold over AAV alone, approaching 1%. Fah(-/-)Ku70(-/-) double knockout mice also had increased gene repair frequencies, genetically confirming the beneficial effects of blocking NHEJ. A second strategy, transient proteasomal inhibition, also increased gene-targeting frequencies but was not additive to NHEJ inhibition. This study establishes the benefit of transient NHEJ inhibition with vanillin, or proteasome blockage with bortezomib, for increasing hepatic gene targeting with rAAV. Functional metabolic correction of a clinically relevant disease model was demonstrated and provided evidence for the feasibility of gene targeting as a therapeutic strategy.


Subject(s)
Benzaldehydes/pharmacology , DNA End-Joining Repair/drug effects , Dependovirus/genetics , Gene Targeting , Genetic Vectors , Proteasome Endopeptidase Complex/drug effects , Animals , Antineoplastic Agents/pharmacology , Boronic Acids/pharmacology , Bortezomib , Disease Models, Animal , Immunohistochemistry , Mice , Mice, Knockout , Plasmids , Polymerase Chain Reaction , Pyrazines/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...