Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(32): 45425-45440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965109

ABSTRACT

Ivermectin (IVM) is a widely used antiparasitic. Concerns have been raised about its environmental effects in the wetlands of Río de la Plata basin where cattle have been treated with IVM for years. This study investigated the sublethal effects of environmentally relevant IVM concentrations in sediments on the Neotropical fish Prochilodus lineatus. Juvenile P. lineatus were exposed to IVM-spiked sediments (2 and 20 µg/Kg) for 14 days, alongside a control sediment treatment without IVM. Biochemical and oxidative stress responses were assessed in brain, gills, and liver tissues, including lipid damage, glutathione levels, enzyme activities, and antioxidant competence. Muscle and brain acetylcholinesterase activity (AChE) and stable isotopes of 13C and 15N in muscle were also measured. The lowest IVM treatment resulted in an increase in brain lipid peroxidation, as measured by thiobarbituric acid reactive substances (TBARs), decreased levels of reduced glutathione (GSH) in gills and liver, increased catalase activity (CAT) in the liver, and decreased antioxidant capacity against peroxyl radicals (ACAP) in gills and liver. The highest IVM treatment significantly reduced GSH in the liver. Muscle (AChE) was decreased in both treatments. Multivariate analysis showed significant overall effects in the liver tissue, followed by gills and brain. These findings demonstrate the sublethal effects of IVM in P. lineatus, emphasizing the importance of considering sediment contamination and trophic habits in realistic exposure scenarios.


Subject(s)
Antiparasitic Agents , Ivermectin , Water Pollutants, Chemical , Animals , Ivermectin/toxicity , Antiparasitic Agents/toxicity , Water Pollutants, Chemical/toxicity , Livestock , South America , Oxidative Stress/drug effects , Geologic Sediments/chemistry , Gills/drug effects , Gills/metabolism
2.
Sci Total Environ ; 923: 171500, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447713

ABSTRACT

Two of the largest water reservoirs in the Metropolitan Region of São Paulo, Brazil (MRSP), named Billings and Guarapiranga, are facing high levels of anthropic impact. This is evidenced by the presence of contaminants and pollutants, which are deteriorating their water quality. Therefore, this study evaluated antioxidant defense enzymes, lipoperoxidation and genotoxicity, in adult females of a native species, Astyanax altiparanae from the Guarapiranga and Billings reservoirs. The study also aimed to evaluate these biomarkers during two different periods of the year, the rainy (summer) and dry (winter) seasons. The oxidative stress was evaluated by the activity of enzymes such as glutathione peroxidase, glutathione S-transferases, superoxide dismutase, and catalase in the gills and liver, and the occurrence of lipoperoxidation was also evaluated in both organs. The genotoxicity was assessed by performing comet assay, micronucleus, and nuclear abnormality tests on blood samples. The results showed that fish from both reservoirs are subjected to oxidative stress and genotoxic damage, mainly during winter, but fish living in Billings showed greater alterations than fish from Guarapiranga. Likewise, the results of the principal component analysis suggested that caffeine, nitrogenous compounds, and some metals might be triggering these toxic effects in fish.


Subject(s)
Characidae , Water Pollutants, Chemical , Animals , Brazil , Catalase/metabolism , Water Quality , Antioxidants/metabolism , Oxidative Stress , Biomarkers/metabolism , Water Pollutants, Chemical/analysis , Gills/metabolism
3.
J Fish Biol ; 102(4): 977-991, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36744697

ABSTRACT

We studied the reproductive strategy, sexual system and growth of dientudo paraguayo Acestrorhynchus pantaneiro. After 2 years of monitoring in shallow areas of a floodplain lake from the lower Paraná basin (Argentina), it was evidenced that water temperature modulated gonadal maturation, but it was the river water level the synchronising stimulus that triggered spawning. This species exhibited a single annual breeding period from October to January, with most spawning activity in November. According to the von Bertalanffy growth curve, fish would reach autumn to winter months with LS of ~120 mm, already mature males. The first mature females were found at LS of 210 mm, becoming sexually mature between the second and third breeding seasons. This is the first integrative study that includes the body-length frequency distribution and sex differential size at first maturity and growth, and reports the presence of intersex gonads questioning its sexual pattern from gonochoristic to sequential hermaphrodite species. The sexual pattern, the multiple spawning behaviour and a medium to high absolute fecundity support the opportunistic and invasive behavior observed in previous contributions for this characiform species.


Subject(s)
Characiformes , Female , Male , Animals , Sexual Maturation , Reproduction , Fertility , Gonads , Seasons , Biology
4.
Sci Total Environ ; 800: 149515, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34392219

ABSTRACT

Ivermectin (IVM) is one of the most widely used antiparasitics worldwide. It is a potent and effective drug for treatment and prevention of internal and external parasitic infections of livestock and humans. IVM is excreted unchanged in manure of treated animals. Thus, residues of IVM may reach aquatic systems, affecting non-target organisms such as fish. Although the presence of IVM in aquatic environments has been reported, a multilevel approach (from cellular to behavioral responses) is necessary to determine the health of exposed organisms and the environmental risks associated. The aim of the present study was to investigate the response of the Neotropical fish Prochilodus lineatus, one of the main target species of South American freshwater fisheries, exposed to environmental concentrations of IVM: low (0.5 µg L-1) and high (1.5 µg L-1). Behavioral responses were assessed in juvenile fish and included water column use, routine swimming, total distance travelled, total activity time and Maximum swimming speed achieved during the escape response. Biochemical/oxidative stress responses assessed included brain acetylcholinesterase (AChE), catalase (CAT) and glutathione S-transferase (GST) activities; total antioxidant competence against peroxyl radicals (ACAP) and lipid oxidative damage (TBARs). Hematological biomarker responses included blood glucose levels, hematocrit, hemoglobin concentration, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and mean corpuscular volume. Condition factor and hepatosomatic index were also calculated. The lowest IVM concentration caused a significant decrease in GST activity and maximum swimming speed during the escape response. Multivariate analysis with biochemical/stress and behavioral data revealed overall effects of IVM treatments. This multilevel analysis shows detrimental effects related to swimming behavior and predator avoidance which could affect population size and size-structure of P. lineatus. To our knowledge this is the first attempt to assess the effects of IVM on Neotropical fishes using an integrative approach based on biomarkers from different levels of biological organization.


Subject(s)
Characiformes , Water Pollutants, Chemical , Acetylcholinesterase , Animals , Fisheries , Glutathione Transferase , Ivermectin/toxicity , Liver , Water Pollutants, Chemical/toxicity
5.
J Fish Biol ; 96(1): 202-216, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31729023

ABSTRACT

In South America, the order Atheriniformes includes the monophyletic genus Odontesthes with 20 species that inhabit freshwater, estuarine and coastal environments. Pejerrey Odontesthes argentinensis is widely distributed in coastal and estuarine areas of the Atlantic Ocean and is known to foray into estuaries of river systems, particularly in conditions of elevated salinity. However, to our knowledge, a landlocked self-sustaining population has never been recorded. In this study, we examined the pejerrey population of Salada de Pedro Luro Lake (south-east of Buenos Aires Province, Argentina) to clarify its taxonomic identity. An integrative taxonomic analysis based on traditional meristic, landmark-based morphometrics and genetic techniques suggests that the Salada de Pedro Luro pejerrey population represents a novel case of physiological and morphological adaptation of a marine pejerrey species to a landlocked environment and emphasises the environmental plasticity of this group of fishes.


Subject(s)
Adaptation, Physiological/physiology , Fishes/physiology , Adaptation, Physiological/genetics , Animals , Aquatic Organisms/physiology , Argentina , Atlantic Ocean , Classification , Estuaries , Fishes/classification , Fishes/genetics , Fresh Water , Genetics, Population , Salt Tolerance
6.
Sci Rep ; 8(1): 10278, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29980756

ABSTRACT

Algal-bacterial interactions include mutualism, commensalism, and predation. However, how multiple environmental conditions that regulate the strength and prevalence of a given interaction remains unclear. Here, we test the hypothesis that the prevailing algal-bacterial interaction shifted in two years (2005 versus 2015), due to increased temperature (T) and Saharan dust depositions in high-mountain lakes of Sierra Nevada (S Spain). Our results support the starting hypothesis that the nature of the prevailing algal-bacterial interaction shifted from a bacterivory control exerted by algae to commensalism, coinciding with a higher air and water T as well as the lower ratio sestonic nitrogen (N): phosphorous (P), related to greater aerosol inputs. Projected global change conditions in Mediterranean region could decline the functional diversity and alter the role of mixotrophy as a carbon (C) by-pass in the microbial food web, reducing the biomass-transfer efficiency up the web by increasing the number of trophic links.


Subject(s)
Bacteria/metabolism , Carbon/metabolism , Climate , Lakes , Microalgae/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Biomass , Ecosystem , Food Chain , Mediterranean Region , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...