Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000719

ABSTRACT

Computational modeling (CM) is a versatile scientific methodology used to examine the properties and behavior of complex systems, such as polymeric materials for biomedical bioengineering. CM has emerged as a primary tool for predicting, setting up, and interpreting experimental results. Integrating in silico and in vitro experiments accelerates scientific advancements, yielding quicker results at a reduced cost. While CM is a mature discipline, its use in biomedical engineering for biopolymer materials has only recently gained prominence. In biopolymer biomedical engineering, CM focuses on three key research areas: (A) Computer-aided design (CAD/CAM) utilizes specialized software to design and model biopolymers for various biomedical applications. This technology allows researchers to create precise three-dimensional models of biopolymers, taking into account their chemical, structural, and functional properties. These models can be used to enhance the structure of biopolymers and improve their effectiveness in specific medical applications. (B) Finite element analysis, a computational technique used to analyze and solve problems in engineering and physics. This approach divides the physical domain into small finite elements with simple geometric shapes. This computational technique enables the study and understanding of the mechanical and structural behavior of biopolymers in biomedical environments. (C) Molecular dynamics (MD) simulations involve using advanced computational techniques to study the behavior of biopolymers at the molecular and atomic levels. These simulations are fundamental for better understanding biological processes at the molecular level. Studying the wide-ranging uses of MD simulations in biopolymers involves examining the structural, functional, and evolutionary aspects of biomolecular systems over time. MD simulations solve Newton's equations of motion for all-atom systems, producing spatial trajectories for each atom. This provides valuable insights into properties such as water absorption on biopolymer surfaces and interactions with solid surfaces, which are crucial for assessing biomaterials. This review provides a comprehensive overview of the various applications of MD simulations in biopolymers. Additionally, it highlights the flexibility, robustness, and synergistic relationship between in silico and experimental techniques.

2.
Microbiol Resour Announc ; 12(12): e0084323, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37962344

ABSTRACT

We announce the genome sequencing, assembly, and annotation of the OLsAu1 strain and its taxonomic assignment to Pseudomonas yamanorum. The isolate comes from a wild edible ectomycorrhizal Lactarius sp. mushroom in the Abies forest. There is information regarding the strain's ability to promote plant growth, indicating its potential application in forestry.

3.
Sci Rep ; 13(1): 14318, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37653073

ABSTRACT

Balamuthia mandrillaris is a pathogenic protozoan that causes a rare but almost always fatal infection of the central nervous system and, in some cases, cutaneous lesions. Currently, the genomic data for this free-living amoeba include the description of several complete mitochondrial genomes. In contrast, two complete genomes with draft quality are available in GenBank, but none of these have a functional annotation. In the present study, the complete genome of B. mandrillaris isolated from a freshwater artificial lagoon was sequenced and assembled, obtaining an assembled genome with better assembly quality parameter values than the currently available genomes. Afterward, the genome mentioned earlier, along with strains V039 and 2046, were subjected to functional annotation. Finally, comparative genomics analysis was performed, and it was found that homologous genes in the core genome potentially involved in the virulence of Acanthamoeba spp. and Trypanosoma cruzi. Moreover, eleven of fifteen genes were identified in the three strains described as potential target genes to develop new treatment approaches for B. mandrillaris infections. These results describe proteins in this protozoan's complete genome and help prioritize which target genes could be used to develop new treatments.


Subject(s)
Acanthamoeba , Balamuthia mandrillaris , Balamuthia mandrillaris/genetics , Virulence/genetics , Comparative Genomic Hybridization , Acanthamoeba/genetics , Genomics
4.
Microbiol Resour Announc ; 12(9): e0036123, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37638742

ABSTRACT

We present the genome of a highly copper-tolerant pink-pigmented facultative methylotroph isolated from the rhizosphere of grasses growing close to mine tailings. Based on whole-genome taxonomic analyses, this isolate was named Methylobacterium radiotolerans MLP1. Studies are in progress to infer its genome-based copper resistome.

5.
Foods ; 12(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613263

ABSTRACT

Pediococcus pentosaceus 1101 was identified by using 16S rRNA and MALDI-Biotyper. The strain was exposed to conditions that resemble the gastrointestinal tract (GT) to evaluate its probiotic properties. That included the growth kinetics, proteolytic and inhibitory activities within a pH range, survival at low pH and in the presence of bile salts, antagonistic activity, cell-adhesion properties, and antibiotic resistance. The evaluation was followed by a genomic and proteomic analysis that involved the identification of proteins obtained under control and gastrointestinal conditions. The strain showed antagonistic activity against Gram-negative and Gram-positive bacteria, high resistance to acidity (87% logarithmic survival rate, pH 2) and bile salts (99% logarithmic survival rate, 0.5% w/v), and hydrophobic binding, as well as sensitivity to penicillin, amoxicillin, and chloramphenicol. On the other hand, P. pentosaceus 1101 has a genome size of 1.76 Mbp, with 1754 coding sequences, 55 rRNAs, and 33 tRNAs. The proteomic analysis showed that 120 proteins were involved in mechanisms in which the strain senses the effects of acid and bile salts. Moreover, the strain produces at least one lytic enzyme (N-acetylmuramoyl-L-alanine amidase; 32 kDa) that may be related to the antimicrobial activity. Therefore, proteins identified might be a key factor when it comes to the adaptation of P. pentosaceus 1101 into the GT and associated with its technological and probiotic properties.

6.
Viruses ; 13(5)2021 04 23.
Article in English | MEDLINE | ID: mdl-33922604

ABSTRACT

Swine enteric viral infections are responsible for substantial economic losses in the pork industry worldwide. Porcine epidemic diarrhea (PEDV) is one of the main causative agents of diarrhea in lactating pigs, and reports of PEDV coinfection with other enteric viruses highlight the importance of viral interactions for disease presentation and outcomes. Using next-generation sequencing (NGS) and sequence analyses from samples taken from piglets with acute diarrhea, we explored the possible interactions between PEDV and other less reported pathogens. PEDV coinfection with porcine kobuvirus (PKV) was detected in 36.4% (27/74) of samples. Full genomes from porcine coronavirus and kobuvirus were obtained, as was a partial porcine sapovirus genome (PSaV). The phylogenetic results show the clustering of these strains corresponding to the geographical relationship. To our knowledge, this is the first full genome and isolation report for porcine kobuvirus in México, as well as the first phylogenetic analysis for porcine sapovirus in the country. The NGS approach provides a better perspective of circulating viruses and other pathogens in affected production units.


Subject(s)
Coinfection/virology , Coronavirus Infections/virology , Kobuvirus/genetics , Kobuvirus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Animals , Coinfection/epidemiology , Coronavirus Infections/epidemiology , Diarrhea/virology , Feces/virology , Genome, Viral , Kobuvirus/classification , Mexico/epidemiology , Molecular Diagnostic Techniques , Phylogeny , Porcine epidemic diarrhea virus/classification , Sapovirus/genetics , Sequence Analysis , Swine , Swine Diseases/virology
7.
Genome Announc ; 6(12)2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29567733

ABSTRACT

Endophytic Klebsiella variicola KvMx2 and Klebsiella pneumoniae KpMx1 isolates obtained from the same sugarcane stem were used for whole-genome sequencing. The genomes revealed clear differences in essential genes for plant growth, development, and detoxification, as well as nitrogen fixation, catalases, cellulases, and shared virulence factors described in the K. pneumoniae pathogen.

8.
Genome Announc ; 5(35)2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28860237

ABSTRACT

In this work, we report the draft genome sequence of Photorhabdus luminescens strain HIM3, a symbiotic bacterium associated with the entomopathogenic nematode Heterorhabditis indica MOR03, isolated from soil sugarcane in Yautepec, Morelos, Mexico. These bacteria have a G+C content of 42.6% and genome size of 5.47 Mb.

9.
Genome Announc ; 5(36)2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28883130

ABSTRACT

We report the draft genome sequence of Gram-negative bacterium Pseudomonas aeruginosa NA04, isolated from the entomopathogenic nematode Heterorhabditis indica MOR03. The draft genome consists of 54 contigs, a length of 6.37 Mb, and a G+C content 66.49%.

10.
Genome Announc ; 4(2)2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27125479

ABSTRACT

Burkholderia cenocepacia is an opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC). Burkholderia cenocepacia strain CEIB S5-2 was isolated from agricultural soils in Morelos, Mexico, and previously has shown its abilities for bioremediation. In this study, we report the draft genome sequence of Burkholderia cenocepacia strain CEIB S5-2.

11.
Genome Announc ; 3(3)2015 May 07.
Article in English | MEDLINE | ID: mdl-25953176

ABSTRACT

Bacteria of the genus Arthrobacter are commonly found in the soil and plant rhizosphere. In this study we report the draft genome of Arthrobacter chlorophenolicus strain Mor30.16 that was isolated from rhizosphere of beans grown in Cuernavaca Morelos, Mexico. This strain promotes growth and ameliorates drought stress in bean plants.

12.
Genome Announc ; 3(2)2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25744996

ABSTRACT

Burkholderia cenocepacia is considered an opportunistic pathogen from humans and may cause disease in plants. A bioprospection from a plaguicide-contaminated agricultural field in Mexico identified several methyl parathion-degrading bacteria. Here, we report the draft genome sequence of B. cenocepacia strain CEIB S5-1, which gave us clues into ecological biodiversity.

13.
Genome Announc ; 2(6)2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25540337

ABSTRACT

We report here the draft genome sequence of Alcaligenes faecalis strain MOR02, a bacterium that is able to colonize nematodes in a temporary fashion and kill insects for their own benefit. The availability of the genome should enable us to explain these phenotypes.

14.
Genome Announc ; 2(6)2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25523778

ABSTRACT

Burkholderia species are widely distributed in the environment. A Burkholderia zhejiangensis strain was isolated from pesticide-contaminated soil from an agricultural field in Mexico and identified as an organophosphorus compound-degrading bacterium. In this study, we report the draft genome sequence of Burkholderia zhejiangensis strain CEIB S4-3.

SELECTION OF CITATIONS
SEARCH DETAIL
...