Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 26(11): 4471-6, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21664117

ABSTRACT

The determination of antigliadin antibodies from human serum samples is of vital importance for the diagnosis of an autoimmune disease such as celiac disease. An electrochemical immunosensor that mimics traditional ELISA type architecture has been constructed for the detection of antigliadin antibodies with control over the orientation and packing of gliadin antigen molecules on the surface of gold electrodes. The orientation of the antigen on the surface has been achieved using a carboxylic-ended bipodal alkanethiol that is covalently linked with amino groups of the antigen protein. The bipodal thiol presents a long poly(ethyleneglycol)-modified chain that acts as an excellent non-specific adsorption barrier. The bipodal nature of the thiol ensured a good spacing and hence good diffusion properties of electroactive species through the self-assembled monolayer, which is vital for the efficiency of the constructed electrochemical immunosensor. The electrochemical immunosensor was characterized using surface plasmon resonance as well as electrochemical impedance spectroscopy. Amperometric evaluation of the sensor with polyclonal antigliadin antibodies showed stable and reproducible low limits of detection (46 ng/mL; % RSD = 8.2, n = 5). The behaviour and performance of the electrochemical immunosensor with more complex matrixes such as reference serum solutions and real patient samples was evaluated and compared with commercial ELISA kits demonstrating an excellent degree of correlation in thirty minutes total assay time; the electrochemical immunosensor not only delivers a positive or negative result, it allows the estimation of semi-quantitative antibody contents based on the comparison against clinical reference solutions.


Subject(s)
Autoantibodies/blood , Biosensing Techniques/methods , Gliadin/immunology , Autoantigens , Biosensing Techniques/statistics & numerical data , Celiac Disease/diagnosis , Celiac Disease/immunology , Dielectric Spectroscopy , Enzyme-Linked Immunosorbent Assay , Humans , Immunoassay/methods , Limit of Detection , Surface Plasmon Resonance
2.
Biosens Bioelectron ; 24(7): 2205-10, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19157849

ABSTRACT

Non-specific adsorption events are responsible to a large extent for the lack of reliability and applicability of electrochemical immunosensors. In the particular case of displacement-based immunosensors, as an approach to achieve reagentless, labelless and easy to use immunosensors, the hindering effect of then non-specific adsorption is amplified when the system presents a low affinity constant between biorecognition element and target. The application of Copper UPD as non-specific adsorption barrier in combination with the use of self-assembled monolayers (SAM) to provide efficient binding of biomolecules to the immunosensor electrode surface is shown to be a very promising mechanism to construct protein resistant surfaces with no harming effects on the electrochemical transducing mechanism. The electrochemical immunodetection of TCA (2,4,6-Trichloroanisole) has been chosen as example for a real case study. A monoclonal antibody to detect the target TCA and an appropriate sub-optimum antigen were used. In addition to a rational strategy for displacement immunosensor development, the decrease of non-specific adsorption phenomena by introducing Copper UPD is reported here. With such strategy an electrochemical displacement immunosensor with a limit of detection of 200ppb and response time of 10min is achieved.


Subject(s)
Anisoles/analysis , Anisoles/chemistry , Biosensing Techniques/instrumentation , Copper/chemistry , Electrochemistry/instrumentation , Electrodes , Immunoassay/instrumentation , Adsorption , Electroplating/methods , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...