Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 20(22): 4166-4174, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33030158

ABSTRACT

We report on the fabrication of an internal reflection element (IRE) combined with a modular polymer microfluidic chip that can be used for attenuated total reflection (ATR) infrared spectroscopy. The IRE is fabricated from a silicon wafer. Two different polymers are used for the fabrication of the two types of modular microfluidic chips, namely polydimethylsiloxane (PDMS) and cyclic olefin copolymer (COC). The microfluidic chip is modular in the sense that several layers of mixing channels, using the herringbone mixer principle, and reactions chambers, can be stacked to facilitate the study of the desired reaction. A model Paal-Knorr reaction is carried out to prove that the chip works as intended. Furthermore, we highlight the strength of IR spectroscopy as a tool for reaction monitoring by identifying the peaks and showing the different reaction orders at the different steps of the Paal-Knorr reaction. The reduction of the aldehyde groups indicates a (pseudo) first order reaction whereas the vibrational modes associated with the ring formation indicate a zero order reaction. This zero order reaction can be explained with literature, where it is suggested that water acts as a catalyst during the dehydration step, which is the final step in the pyrrole ring formation.

2.
Analyst ; 145(7): 2482-2509, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-31998878

ABSTRACT

The combination of electrochemistry and spectroscopy, known as spectroelectrochemistry (SEC), is an already established approach. By combining these two techniques, the relevance of the data obtained is greater than what it would be when using them independently. A number of review papers have been published on this subject, mostly written for experts in the field and focused on recent advances. In this review, written for both the novice in the field and the more experienced reader, the focus is not on the past but on the future. The scope is narrowed down to four techniques the authors claim to have the most potential for the future, namely: infrared spectroelectrochemistry (IR-SEC), Raman spectroelectrochemistry (Raman-SEC), nuclear magnetic resonance spectroelectrochemistry (NMR-SEC) and, perhaps slightly more controversial but certainly promising, electrochemistry mass-spectrometry (EC-MS).

3.
Nanoscale ; 11(25): 12152-12160, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31194202

ABSTRACT

We report a robust and high-yield fabrication method for wafer-scale patterning of high-quality arrays of dense gold nanogaps, combining displacement Talbot lithography based shrink-etching with dry etching, wet etching, and thin film deposition techniques. By using the self-sharpening of <111>-oriented silicon crystal planes during the wet etching process, silicon structures with extremely smooth nanogaps are obtained. Subsequent conformal deposition of a silicon nitride layer and a gold layer results in dense arrays of narrow gold nanogaps. Using this method, we successfully fabricate high-quality Au nanogaps down to 10 nm over full wafer areas. Moreover, the gap spacing can be tuned by changing the thickness of deposited Au layers. Since the roughness of the template is minimized by the crystallographic etching of silicon, the roughness of the gold nanogaps depends almost exclusively on the roughness of the sputtered gold layers. Additionally, our fabricated Au nanogaps show a significant enhancement of surface-enhanced Raman scattering (SERS) signals of benzenethiol molecules chemisorbed on the structure surface, at an average enhancement factor up to 1.5 × 106.

SELECTION OF CITATIONS
SEARCH DETAIL
...