Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 127(40): 8404-8414, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37775181

ABSTRACT

We have employed amplitude- and phase-resolved second-harmonic generation spectroscopy to investigate ion-specific effects of monovalent cations at the fused silica:water interface maintained under acidic, neutral, and alkaline conditions. We find a negligible dependence of the total potential (as negative as -400 mV at pH 14), the second-order nonlinear susceptibility (as large as 1.5 × 10-21 m2 V-1 at pH 14), the number of Stern layer water molecules (1 × 1015 cm-2 at pH 5.8), and the energy associated with water alignment upon going from neutral to high pH (ca. -24 kJ mol-1 to -48 kJ mol-1 at pH 13 and 14, close to the cohesive energy of liquid water but smaller than that of ice) on chlorides of the alkali series (M+ = Li+, Na+, K+, Rb+, and Cs+). Attempts are presented to provide estimates for the molecular hyperpolarizability of the cations and anions in the Stern layer at high pH, which arrive at ca. 20-fold larger values for αtotal ions(2) = αM+(2) + αOH-(2) + αCl-(2) when compared to water's molecular hyperpolarizability estimate from theory and point to a sizable contribution of deprotonated silanol groups at high pH. In contrast to the alkali series, a pronounced dependence of the total potential and the second-order nonlinear susceptibility on monovalent cationic (cetrimonium bromide, CTAB) and anionic (perfluorooctanoic and perfluorooctanesulfonic acid, PFOA and PFOS) surfactants was quantifiable. Our findings are consistent with a low surface coverage of the alkali cations and a high surface coverage of the surfactants. Moreover, they underscore the important contribution of Stern layer water molecules to the total potential and second-order nonlinear susceptibility. Finally, they demonstrate the applicability of heterodyne-detected second-harmonic generation spectroscopy for identifying perfluorinated acids at mineral:water interfaces.

2.
J Phys Chem Lett ; 12(24): 5649-5659, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34110833

ABSTRACT

Nonresonant second harmonic generation (SHG) phase and amplitude measurements obtained from the silica-water interface at varying pH values and an ionic strength of 0.5 M point to the existence of a nonlinear susceptibility term, which we call χX(3), that is associated with a 90° phase shift. Including this contribution in a model for the total effective second-order nonlinear susceptibility produces reasonable point estimates for interfacial potentials and second-order nonlinear susceptibilities when χX(3) ≈ 1.5χwater(3). A model without this term and containing only traditional χ(2) and χ(3) terms cannot recapitulate the experimental data. The new model also provides a demonstrated utility for distinguishing apparent differences in the second-order nonlinear susceptibility when the electrolyte is NaCl versus MgSO4, pointing to the possibility of using heterodyne-detected SHG to investigate ion specificity in interfacial processes.

3.
J Phys Chem B ; 124(4): 641-649, 2020 01 30.
Article in English | MEDLINE | ID: mdl-31903764

ABSTRACT

We report the detection of charge reversal induced by the adsorption of an aqueous cationic polyelectrolyte, poly(allylamine hydrochloride) (PAH), to supported lipid bilayers (SLBs) used as idealized model biological membranes. Through the use of an α-quartz reference crystal, we quantify the total interfacial potential at the interface in absolute units using heterodyne-detected second harmonic generation (HD-SHG) as an optical voltmeter. This quantification is made possible by isolating the phase-shifted potential-dependent third-order susceptibility from other contributions to the total SHG response. We detect the sign and magnitude of the surface potential and the point of charge reversal at buried interfaces without prior information or complementary data. Isolation of the second-order susceptibility contribution from the overall SHG response allows us to directly characterize the Stern and diffuse layers over single-component SLBs. We apply the method to SLBs formed from three different zwitterionic lipids having different gel-to-fluid phase transition temperatures (Tm's). We determine whether the surface potential changes with the physical phase state (gel, transitioning, or fluid) of the SLB. Furthermore, we incorporate 20% of negatively charged lipids to the zwitterionic SLB to investigate how the surface potential and the second-order nonlinear susceptibility χ(2) change with surface charge.


Subject(s)
Lipid Bilayers/chemistry , Polyamines/chemistry , Glycerophosphates/chemistry , Spectrum Analysis , Static Electricity , Transition Temperature
4.
Proc Natl Acad Sci U S A ; 116(33): 16210-16215, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31358629

ABSTRACT

Current approaches for electric power generation from nanoscale conducting or semiconducting layers in contact with moving aqueous droplets are promising as they show efficiencies of around 30%, yet even the most successful ones pose challenges regarding fabrication and scaling. Here, we report stable, all-inorganic single-element structures synthesized in a single step that generate electrical current when alternating salinity gradients flow along its surface in a liquid flow cell. Nanolayers of iron, vanadium, or nickel, 10 to 30 nm thin, produce open-circuit potentials of several tens of millivolt and current densities of several microA cm-2 at aqueous flow velocities of just a few cm s-1 The principle of operation is strongly sensitive to charge-carrier motion in the thermal oxide nanooverlayer that forms spontaneously in air and then self-terminates. Indeed, experiments suggest a role for intraoxide electron transfer for Fe, V, and Ni nanolayers, as their thermal oxides contain several metal-oxidation states, whereas controls using Al or Cr nanolayers, which self-terminate with oxides that are redox inactive under the experimental conditions, exhibit dramatically diminished performance. The nanolayers are shown to generate electrical current in various modes of application with moving liquids, including sliding liquid droplets, salinity gradients in a flowing liquid, and in the oscillatory motion of a liquid without a salinity gradient.

5.
J Phys Chem B ; 123(27): 5848-5856, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31260309

ABSTRACT

Ion specific outcomes at aqueous interfaces remain among the most enigmatic phenomena in interfacial chemistry. Here, charged fused silica/water interfaces have been probed by homodyne- and heterodyne-detected (HD) second harmonic generation (SHG) spectroscopy at pH 7 and 5.8 and for concentrations of LiCl, NaCl, NaBr, NaI, KCl, RbCl, and CsCl ranging from tens of micromolar to several hundred millimolar. For ionic strengths around 0.1-1 mM, SHG intensities increase reversibly by up to 15% compared to the condition of zero added salt because of optical phase matching and the electrical double layer. For ionic strengths above 1 mM, use of any combination of cations and anions produces decreases in SHG response by as much as 50%, trending with ion softness when compared to the condition of zero added salt. Gouy-Chapman model fits to homodyned SHG intensities for the alkali halides studied here show that charge densities increase significantly with decreasing cation size. HD-SHG measurements indicate diffuse layer properties probed by the SHG process are invariant with ion identity, while Stern layer properties, as reported by χ(2), are subject to ion specificity for the ions surveyed in this work in the order of χRbCl(2) = 1/2χNaCl(2) = 1/4χNaI(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...