Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(44): 15748-15755, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37882626

ABSTRACT

To stabilize and transport them through complex systems, nanoparticles are often encapsulated in polymeric nanocarriers, which are tailored to specific environments. For example, a hydrophilic polymer capsule maintains the circulation and stability of nanoparticles in aqueous environments. A more highly designed nanocarrier might have a hydrophobic core and a hydrophilic shell to allow the transport of hydrophobic nanoparticles and pharmaceuticals through physiological media. Polydimethylsiloxane, PDMS, is a hydrophobic material in a liquid-like state at room temperature. The preparation of stable, aqueous dispersions of PDMS droplets in water is problematic due to the intense mismatch in surface energies between PDMS and water. The present work describes the encapsulation of hydrophobic metal and metal oxide nanoparticles within PDMS nanodroplets using flash nanoprecipitation. The PDMS is terminated by amino groups, and the nanodroplet is capped with a layer of poly(styrenesulfonate), forming a glassy outer shell. The hydrophobic nanoparticles nucleate PDMS droplet formation, decreasing the droplet size. The resulting nanocomposite nanodroplets are stable in aqueous salt solutions without the use of surfactants. The hierarchical structuring, elucidated with small-angle X-ray scattering, offers a new platform for the isolation and transport of hydrophobic molecules and nanoparticles through aqueous systems.

2.
Langmuir ; 38(31): 9611-9620, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35877784

ABSTRACT

Nanocomposites with unusual and superior properties often contain well-dispersed nanoparticles. Polydimethylsiloxane, PDMS, offers a fluidlike or rubbery (when cross-linked) response, which complements the high-modulus nature of inorganic nanofillers. Systems using PDMS as the nanoparticulate, rather than the continuous, phase are rare because it is difficult to make PDMS nanoparticles. Aqueous dispersions of hydrophobic polymer nanoparticles must survive the considerable contrast in hydrophobicity between water and the polymer component. This challenge is often met with a shell of hydrophilic polymer or by adding surfactant. In the present work, two critical advances for making and using aqueous colloidal dispersions of PDMS are reported. First, PDMS nanoparticles with charged amino end groups were prepared by flash nanoprecipitation in aqueous solutions. Adding a negative polyelectrolyte, poly(styrene sulfonate), PSS, endowed the nanoparticles with a glassy shell, stabilizing them against aggregation. Second, when compressed into a nanocomposite, the small amount of PSS leads to a large increase in bulk modulus. X-ray scattering studies revealed the hierarchical nanostructuring within the composite, with a 4 nm PDMS micelle as the smallest unit. This class of nanoparticle and nanocomposite presents a new paradigm for stabilizing liquidlike building blocks for nanomaterials.

4.
Angew Chem Int Ed Engl ; 60(5): 2485-2492, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33079422

ABSTRACT

Surface passivation of perovskite solar cells (PSCs) using a low-cost industrial organic pigment quinacridone (QA) is presented. The procedure involves solution processing a soluble derivative of QA, N,N-bis(tert-butyloxycarbonyl)-quinacridone (TBOC-QA), followed by thermal annealing to convert TBOC-QA into insoluble QA. With halide perovskite thin films coated by QA, PSCs based on methylammonium lead iodide (MAPbI3 ) showed significantly improved performance with remarkable stability. A PCE of 21.1 % was achieved, which is much higher than 18.9 % recorded for the unmodified devices. The QA coating with exceptional insolubility and hydrophobicity also led to greatly enhanced contact angle from 35.6° for the pristine MAPbI3 thin films to 77.2° for QA coated MAPbI3 thin films. The stability of QA passivated MAPbI3 perovskite thin films and PSCs were significantly enhanced, retaining about 90 % of the initial efficiencies after more than 1000 hours storage under ambient conditions.

5.
J Phys Chem B ; 124(47): 10832-10840, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33174752

ABSTRACT

Various charged groups may be used as a repeat unit in polyelectrolytes to provide physical interactions between oppositely charged polymers leading to phase separation. The materials formed thus are termed polyelectrolyte complexes or coacervates (PECs). The strength of pairing between positive, Pol+, and negative, Pol-, repeat units depends on the specific identity of the monomer repeat unit. In this work, the pairing strength of the thiouronium group, a cation closely related to guanidinium, is evaluated using a polythiouronium polyelectrolyte. Polymers containing guanidinium, notably polyarginine, a peptide, are known for their unusual behavior, such as the formation of like-charge ion pairs and hydrogen bonding. It is shown here that some of this behavior is carried over to polythiouroniums, which results in exceptionally strong interactions with polyanions such as polysulfonates and polycarboxylates. The resilience of the polythiouronium/Pol- interaction was evaluated using the buildup of polyelectrolyte multilayers at various salt concentrations and by breaking up preformed PECs with high concentrations of added salt. The thiouronium group even interacts strongly enough with polymeric zwitterions to enable complexation with this nominally weakly interacting, net-neutral polymer.


Subject(s)
Polyelectrolytes , Hydrogen Bonding , Macromolecular Substances
6.
J Phys Chem Lett ; 10(19): 5923-5928, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31529944

ABSTRACT

Organometal halide perovskite materials, in particular colloidal perovskite nanocrystals (NCs), have been investigated extensively as next-generation light-emitting materials. However, producing highly efficient and stable perovskite thin films from colloidal NCs is not trivial, as dissociation of surfactants often occurs during the thin-film formation. Here, we demonstrate a facile solution-processing approach to prepare perovskite nanocomposite thin films by using phosphonium as the capping ligand for methylammonium lead bromide (MAPbBr3) NCs. The photoluminescence and stability of thin films containing in situ formed perovskite NCs were greatly enhanced after phosphonium passivation, with the photoluminescence quantum efficiency reaching 78% and only 5% decrease of the intensity after one month's exposure in ambient conditions. Electrically driven light-emitting diodes (LEDs) based on pristine perovskite neat thin films and organic-perovskite nanocomposite thin films were fabricated, and we observed a 10-fold improvement in the external quantum efficiency of these LEDs (from 0.6% to 6.3%) resulting from the in situ formation of perovskite NCs with phosphonium passivation.

SELECTION OF CITATIONS
SEARCH DETAIL
...