Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(25): 32611-32618, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38864643

ABSTRACT

Membrane with remarkable proton conductance and selectivity plays a key role in obtaining high vanadium flow battery (VFB) performance. In this work, the trade-off effect between proton conductance and vanadium ion blocking was overcome by the introduction of a cross-linking structure to prepare covalent cross-linked fluorine-containing sulfonated polyimide (CFSPI-PVA) membranes. Herein, the CFSPI-PVA-15 membrane possesses excellent comprehensive properties, including acceptable area resistance (0.21 Ω cm2), lower vanadium ion permeability (0.76 × 10-7 cm2 min-1), and remarkable proton selectivity (3.11 × 105 min cm-3) compared with the commercial Nafion 212 membrane. At the same time, the CFSPI-PVA-15 membrane exhibits higher coulomb efficiencies (97.26%-99.34%) and energy efficiencies (68.65%-88.11%) and a longer self-discharge duration (29.2 h) in contrast with the Nafion 212 membrane. Moreover, 500 cycles of the CFSPI-PVA-15 membrane at 160 mA cm-2 are also stably executed. The internal reasons for the improved chemical stability of the CFSPI-PVA-15 membrane are clarified from theoretical calculations with the mean square displacement value and fractional free volume. Therefore, the CFSPI-PVA-15 membrane exhibits great potential for application in VFB.

SELECTION OF CITATIONS
SEARCH DETAIL
...