Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 51(1): 433-41, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22133027

ABSTRACT

Mutagenesis of the conserved glutamic acid of influenza type A (E277) and Micromonospora viridifaciens (E260) sialidases was performed to probe the contribution of this strictly conserved residue to catalysis. Kinetic studies of the E260D and E260C M. viridifaciens mutant enzymes reveal that the overall mechanism of action has not changed. That is, the mutants are retaining sialidases in which glycosylation and deglycosylation are rate-limiting for k(cat)/K(m) and k(cat), respectively. The solvent kinetic isotope effect and proton inventory on k(cat) for the E260C mutant sialidase provide strong evidence that the newly installed cysteine residue provides little catalytic acceleration. The results are consistent with the conserved aspartic acid residue (D92) becoming the key general acid/base residue in the catalytic cycle. In addition, the E277D mutant influenza type A sialidase is catalytically active toward 4-nitrophenyl α-D-sialoside, although no measurable hydrolysis of natural substrates was observed. Thus, mutating the glutamate residue (E277) to an aspartate increases the activation free energy of hydrolysis for natural substrates by >22 kJ/mol.


Subject(s)
Glutamic Acid/chemistry , Influenza A virus/enzymology , Micromonospora/enzymology , Neuraminidase/chemistry , Baculoviridae/enzymology , Baculoviridae/genetics , Catalysis , Catalytic Domain/genetics , Clostridium perfringens/enzymology , Clostridium perfringens/genetics , Conserved Sequence , Crystallography, X-Ray , Deuterium Exchange Measurement , Humans , Influenza A virus/genetics , Micromonospora/genetics , Mutagenesis, Site-Directed , Neuraminidase/metabolism , Substrate Specificity/genetics
2.
J Am Chem Soc ; 133(9): 2989-97, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21322554

ABSTRACT

A panel of seven isotopically substituted sialoside natural substrate analogues based on the core structure 7-(5-acetamido-3,5-dideoxy-d-glycero-α-d-galacto-non-2-ulopyranosylonic acid)-(2→6)-ß-D-galactopyranosyloxy)-8-fluoro-4-methylcoumarin (1, Neu5Acα2,6GalßFMU) have been synthesized and used to probe the rate-limiting step for turnover by the M. viridifaciens sialidase. The derived kinetic isotope effects (KIEs) on k(cat) for the ring oxygen ((18)V), leaving group oxygen ((18)V), anomeric carbon ((13)V), C3-carbon ((13)V), C3-R deuterium ((D)V(R)), C3-S deuterium ((D)V(S)), and C3-dideuterium ((D)(2)V) are 0.986 ± 0.003, 1.003 ± 0.005, 1.021 ± 0.006, 1.001 ± 0.008, 1.029 ± 0.007, 0.891 ± 0.008, and 0.890 ± 0.006, respectively. The solvent deuterium KIE ((D(2)O)V) for the sialidase-catalyzed hydrolysis of 1 is 1.585 ± 0.004. In addition, a linear proton inventory was measured for the rate of hydrolysis, under saturating condition, as a function of n, the fraction of deuterium in the solvent. These KIEs are compatible with rate-determining cleavage of the enzymatic tyrosinyl ß-sialoside intermediate. Moreover, the secondary deuterium KIEs are consistent with the accumulating Michaelis complex in which the sialosyl ring of the carbohydrate substrate is in a (6)S(2) skew boat conformation. These KIE measurements are also consistent with the rate-determining deglycosylation reaction occurring via an exploded transition state in which synchronous charge delocalization is occurring onto the ring oxygen atom. Finally, the proton inventory and the magnitude of the solvent KIE are consistent with deglycosylation involving general acid-catalyzed protonation of the departing tyrosine residue rather than general base-assisted attack of the nucleophilic water.


Subject(s)
Micromonospora/enzymology , Neuraminidase/metabolism , Glycosylation , Kinetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...