Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Article in English | MEDLINE | ID: mdl-38839349

ABSTRACT

T-tubes and airway stents are commonly used but have limited effectiveness and frequent complications. A 50-year-old male patient presented with severe tracheal stenosis, affecting an 8.7 cm length of the airway. We employed an innovative approach known as external suspension fixation of tracheal stent using robotic assistance. This method involves surgically attaching the stent to the exterior of the trachea to provide support and stabilize the softened or collapsed tracheal segments. We designed a C-shaped nickel-titanium alloy exterior stent and successfully fixed it using robotic assistance. This intervention effectively restored tracheal function and led to a favorable postoperative recovery. The technique does not affect tracheal membrane function or airway mucociliary clearance. It could potentially be considered as a new option for treating long-segment benign tracheal softening or collapse.


Subject(s)
Nickel , Prosthesis Design , Robotic Surgical Procedures , Stents , Titanium , Tracheal Stenosis , Humans , Male , Middle Aged , Tracheal Stenosis/surgery , Tracheal Stenosis/diagnostic imaging , Tracheal Stenosis/etiology , Tracheal Stenosis/physiopathology , Treatment Outcome , Alloys
3.
BMC Prim Care ; 25(1): 133, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664696

ABSTRACT

BACKGROUND: Village doctors are the main health service providers in China's rural areas. Compared with other rural groups, they will have a sense of relative deprivation, which has an impact on their practice mentality and job stability. This study aims to analyze the changes and causes of relative deprivation among village doctors, so as to improve the stability of them. METHODS: The data were collected from two surveys conducted in Shandong Province in 2015 and 2021. In 2015, 322 village doctors were surveyed and 307 questionnaires were collected, with a recovery rate of 95.3%. In 2021, 394 village doctors were surveyed and 366 questionnaires were collected, with a recovery rate of 92.9%. Descriptive and univariate analysis were used to compare the changes before and after the survey. RESULTS: The scores of vertical deprivation of village doctors increased from 2.77 ± 0.81 in 2015 to 3.04 ± 0.83 in 2021, with a statistically significant difference (P < 0.001). The reference group selected by village doctors changed from village teachers to ordinary villagers. Compared to village teachers, the horizontal deprivation score of village doctors increased from 3.47 ± 0.87 to 3.97 ± 0.77, with a statistically significant difference (P < 0.001). Compared to villagers, only the professional reputation deprivation score increased, from 2.38 ± 0.93 to 2.68 ± 0.76, with a statistically significant difference (P < 0.05). CONCLUSIONS: As time goes by, village doctors fail to reach the expected level in terms of economic income, social status, professional reputation and living standards, resulting in a sense of relative deprivation. This may have a negative impact on village doctors' work motivation and behavior, and will fail to guarantee the sustainability of the team. We should pay attention to this unbalanced mentality of village doctors.


Subject(s)
Physicians , Humans , Cross-Sectional Studies , China/epidemiology , Female , Male , Adult , Physicians/psychology , Physicians/statistics & numerical data , Surveys and Questionnaires , Middle Aged , Job Satisfaction , Community Health Workers , Rural Health Services/statistics & numerical data , Rural Population/statistics & numerical data
4.
Bioresour Technol ; 400: 130668, 2024 May.
Article in English | MEDLINE | ID: mdl-38583677

ABSTRACT

This study examined the removal of typical antibiotics from simulated swine wastewater. Microalgae-bacteria/fungi symbioses were constructed using Chlorella ellipsoidea, endophytic bacteria (S395-2), and Clonostachys rosea as biomaterials. The growth, photosynthetic performance, and removal of three types of antibiotics (tetracyclines, sulfonamides, and quinolones) induced by four phytohormones were analyzed in each system. The results showed that all four phytohormones effectively improved the tolerance of symbiotic strains against antibiotic stress; strigolactones (GR24) achieved the best performance. At 10-9 M, GR24 achieved the best removal of antibiotics by C. elliptica + S395-2 + C. rosea symbiosis. The average removals of tetracycline, sulfonamide, and quinolone by this system reached 96.2-99.4 %, 75.2-81.1 %, and 66.8-69.9 %, respectively. The results of this study help to develop appropriate bio enhancement strategies as well as design and operate algal-bacterial-fungal symbiotic processes for the treatment of antibiotics-containing wastewater.


Subject(s)
Anti-Bacterial Agents , Microalgae , Plant Growth Regulators , Wastewater , Water Purification , Animals , Microalgae/drug effects , Wastewater/chemistry , Anti-Bacterial Agents/pharmacology , Swine , Water Purification/methods , Plant Growth Regulators/pharmacology , Water Pollutants, Chemical , Symbiosis/drug effects , Biodegradation, Environmental , Photosynthesis/drug effects , Chlorella/drug effects
5.
Noncoding RNA Res ; 9(2): 437-446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511064

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most aggressive and refractory cancers due to its high propensity to metastasize and the unavailability of efficacious treatments. Circular RNAs (circRNAs) participate in diverse biological activities in human cancers. Here, we detected the upregulation of a novel circRNA, circZCCHC2 (hsa_circ_0000854), in HCC samples and cells. The upregulation indicated an unfavorable prognosis in HCC patients. CircZCCHC2 accelerated cell growth and metastasis in vitro and tumorigenicity in vivo. Mechanistic investigations revealed that circZCCHC2 regulated BTBD7 expression by sponging miR-936. Moreover, the suppression of malignancy caused by circZCCHC2 knockdown could be sufficiently reversed by miR-936 inhibition. Additionally, the suppressed Rho/ROCK2 pathway conferred by circZCCHC2 knockdown could be restored by inhibiting miR-936 expression. Collectively, our findings reveal that circZCCHC2 plays an oncogenic role of in HCC progression by modulating the miR-936/BTBD7/Rho/ROCK2 pathway.

7.
Bioresour Technol ; 395: 130369, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272143

ABSTRACT

This study assessed the effect of gibberellins (GAs) concentrations on antibiotic and nutrient removal using diverse microalgal-bacterial-fungal consortia. Five systems (Chlorella vulgaris, T1; C. vulgaris + S395-2 + Clonostachys rosea, T2; C. vulgaris + S395-2 + Ganoderma lucidum, T3; C. vulgaris + S395-2 + Pleurotus pulmonarius, T4; and C. vulgaris + S395-2, T5) were established, and optimal conditions and effective symbiosis were applied to improve antibiotic and nutrient removal. Consortium growth was T2 > T3 > T5 > T4 > T1, while GA impact ranked 50 mg L-1 > 20 mg L-1 > 80 mg L-1 > 0 mg L-1. After 7 days at 50 mg L-1 GAs, total nitrogen (TN), NH4-N, NO3-N, and total phosphorous (TP) removal reached 85.97 %, 78.08 %, 86.59 %, and 94.39 %, respectively. Florfenicol, oxytetracycline hydrochloride, ofloxacin, and sulfamethoxazole removal efficiencies were 67.77 %, 98.29 %, 90.47 %, and 94.92 %, respectively. These findings highlight GAs' significant role in enhancing antibiotic and nutrient removal.


Subject(s)
Chlorella vulgaris , Microalgae , Wastewater , Gibberellins , Anti-Bacterial Agents/pharmacology , Nutrients , Aquaculture , Nitrogen/analysis , Bacteria , Fungi , Biomass
8.
Water Environ Res ; 96(1): e10977, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38254264

ABSTRACT

The construction of dominant algal species and bacterial strains in algal treatment technology was crucial for pollutant removal. In order to enhance the purification capability of microalgae toward heavy metals in water as well as biogas slurry and biogas, symbiotic systems were respectively constructed using Chlorella vulgaris and two different endogenous bacteria (microalgal endophytic bacteria S395-2 and plant endophytic bacteria BEB7). The results demonstrated that the endogenous bacteria (S395-2 and BEB7) effectively promote the growth, biomass yield, photosynthetic activity, and carbonic anhydrase activity of microalgae. Additionally, BEB7 exhibited superior promotion effects on microalgae compared to S395-2. Moreover, the BEB7-microalgae co-cultivation system not only efficiently removed heavy metals from water but also effectively purified the nutrients and CO2 in biogas slurry. The optimal effect was observed when the ratio of BEB7 to microalgae was 10:1. This study has established a solid theoretical foundation for the application of microalgae in pollutant purification. PRACTITIONER POINTS: Endogenous bacteria effectively promoted microalgal performance. The optimal ratio of BEB7 to microalgae was 10:1. Chlorella vulgaris-BEB7 showed the best removal performance.


Subject(s)
Chlorella vulgaris , Environmental Pollutants , Metals, Heavy , Microalgae , Biofuels , Bacteria , Nutrients , Water
9.
Bioresour Technol ; 394: 130182, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081467

ABSTRACT

To develop and characterize novel antibiotics removal biomaterial technology, we constructed three different bacteria-microalgae-fungi consortiums containing Chlorella vulgaris (C. vulgaris), endophytic bacterium, Clonostachys rosea (C. rosea), Ganoderma lucidum, and Pleurotus pulmonarius. The results showed that under treatment with 50 mg/L of gibberellins (GAs), the three bacteria-microalgae-fungi symbionts had maximal growth rates (0.317 ± 0.030 d-1) and the highest removal efficiency for seven different antibiotics. Among them, C. vulgaris-endophytic bacterium-C. rosea symbiont had the best performance, with antibiotics removal efficiencies of 96.0 ± 1.4 %, 91.1 ± 7.9 %, 48.7 ± 5.1 %, 34.6 ± 2.9 %, 61.0 ± 5.5 %, 63.7 ± 5.6 %, and 54.3 ± 4.9 % for tetracycline hydrochloride, oxytetracycline hydrochloride, ciprofloxacin, norfloxacin, sulfadiazine, sulfamethazine, and sulfamethoxazole, respectively. Overall, the present study demonstrates that 50 mg/L GAs enhances biomass production and antibiotics removal efficiency of bacteria-microalgae-fungi symbionts, providing a framework for future antibiotics-containing wastewater treatment using three-phase symbionts.


Subject(s)
Chlorella vulgaris , Microalgae , Gibberellins , Plant Growth Regulators , Anti-Bacterial Agents/pharmacology , Wastewater , Bacteria , Fungi , Biomass
10.
Huan Jing Ke Xue ; 44(12): 6823-6832, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098407

ABSTRACT

Using diammonium hydrogen phosphate as an activator and N and P source and and bamboo chips as the carbon source, N, P co-doped activated carbon was prepared by one-step pyrolysis and used to efficiently remove La3+ in aqueous solutions. The effects of activation temperature and pH value on the adsorption performance of La3+ were analyzed, and the activation and adsorption mechanisms were explored using TG-IR, SEM-EDX, pore structure, XPS, and hydrophilicity. The results showed that diammonium hydrogen phosphate easily decomposed at a high temperature to produce ammonia and phosphoric acid, which activated the material and promoted the increase in the specific surface area and pore volume of the activated carbon. As an N and P source, the addition of diammonium hydrogen phosphate successfully achieved the N, P co-doping of activated carbon, and the introduction of N- and P-containing functional groups was the key to enhance the adsorption of La3+. Among them, graphitic nitrogen could provide interactions between La3+-π bonds, and C-P=O and C/P-O-P could provide active sites for the adsorption of La3+ through complexation and electrostatic interaction. The adsorption of La3+ on N, P co-doped activated carbons was endothermic and spontaneous, and the adsorption process conformed to the Langmuir isotherm and secondary kinetic model. Under the process conditions of an activation temperature of 900℃ and pH=6, the adsorption capacity of the N, P co-doped activated carbon was as high as 55.18 mg·g-1, which was 2.53 times higher than that of the undoped sample, and its adsorption selectivity for La3+ in the La3+/Na+and La3+/Ca2+ coexistence systems reached 93.49% and 82.49%, respectively. Additionally, the removal efficiency remained above 54% after five successive adsorption-desorption cycle experiments.

11.
BMC Biol ; 21(1): 244, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37926805

ABSTRACT

BACKGROUND: Sterile-fertile heteroblasty is a common phenomenon observed in ferns, where the leaf shape of a fern sporophyll, responsible for sporangium production, differs from that of a regular trophophyll. However, due to the large size and complexity of most fern genomes, the molecular mechanisms that regulate the formation of these functionally different heteroblasty have remained elusive. To shed light on these mechanisms, we generated a full-length transcriptome of Ceratopteris chingii with PacBio Iso-Seq from five tissue samples. By integrating Illumina-based sequencing short reads, we identified the genes exhibiting the most significant differential expression between sporophylls and trophophylls. RESULTS: The long reads were assembled, resulting in a total of 24,024 gene models. The differential expressed genes between heteroblasty primarily involved reproduction and cell wall composition, with a particular focus on expansin genes. Reconstructing the phylogeny of expansin genes across 19 plant species, ranging from green algae to seed plants, we identified four ortholog groups for expansins. The observed high expression of expansin genes in the young sporophylls of C. chingii emphasizes their role in the development of heteroblastic leaves. Through gene coexpression analysis, we identified highly divergent expressions of expansin genes both within and between species. CONCLUSIONS: The specific regulatory interactions and accompanying expression patterns of expansin genes are associated with variations in leaf shapes between sporophylls and trophophylls.


Subject(s)
Cell Wall , Fertility , Phylogeny , Plant Leaves/genetics , Reproduction , Plant Proteins/genetics , Gene Expression Regulation, Plant
12.
Bioresour Technol ; 388: 129796, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742816

ABSTRACT

Antibiotic misuse are potentially harmful to the environment and human health. Four algal symbionts were constructed using Chlorella vulgaris, endophytic bacterium and Clonostachys rosea (C. rosea) as the biomaterials. The growth, photosynthetic activity, and antibiotic removal efficiency of symbiont under different initial antibiotic concentrations was analyzed. The results showed that the microalgae-bacteria-fungi symbiont had a maximum growth rate of 0.307 ± 0.030 d-1 and achieved 99.35 ± 0.47%, 81.06 ± 7.83%, and 79.15 ± 7.26% removal of oxytetracycline (OTC), sulfadimethazine (SM2), and ciprofloxacin hydrochloride (CPFX), respectively, at an initial antibiotic concentration of 0.25 mg/L. C. rosea has always existed as a biocontrol fungus. In this study, it was innovatively used to construct algal symbionts and used for antibiotic wastewater treatment with a high efficiency. The results contribute to the development of appropriate bioaugmentation strategies and the design of an algal symbiont process for the treatment of antibiotic-containing wastewater.

13.
Sci Data ; 10(1): 467, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468511

ABSTRACT

Watershield (Brasenia schreberi) is an aquatic plant that belongs to the basal angiosperm family Cabombaceae. This species has been cultivated as an aquatic vegetable for more than 3000 years in East Asia, but the natural populations have greatly declined in recent decades and have become endangered in several countries of East Asia. In this study, by using PacBio long reads, Illumina short reads, and Hi-C sequencing data, we assembled the genome of B. schreberi, which was approximately 1170.4 Mb in size with a contig N50 of 7.1 Mb. Of the total assembled sequences, 93.6% were anchored to 36 pseudochromosomes with a scaffold N50 of 28.9 Mb. A total of 74,699 protein-coding genes were predicted in the B. schreberi genome, and 558 Mb of repetitive elements occupying 47.69% of the genome were identified. BUSCO analysis yielded a completeness score of 95.8%. The assembled high-quality genome of B. schreberi will be a valuable reference for the study of conservation, evolution and molecular breeding in this species.


Subject(s)
Chromosomes, Plant , Genome, Plant , Tracheophyta , Asia, Eastern , Molecular Sequence Annotation , Phylogeny , Repetitive Sequences, Nucleic Acid , Seeds
14.
Front Plant Sci ; 14: 1138498, 2023.
Article in English | MEDLINE | ID: mdl-37265642

ABSTRACT

Typha angustifolia L., known as narrowleaf cattail, is widely distributed in Eurasia but has been introduced to North America. Typha angustifolia is a semi-aquatic, wetland obligate plant that is widely distributed in Eurasia and North America. It is ecologically important for nutrient cycling in wetlands where it occurs and is used in phytoremediation and traditional medicine. In order to construct a high-quality genome for Typha angustifolia and investigate genes in response to high nitrogen stress, we carried out complete genome sequencing and high-nitrogen-stress experiments. We generated a chromosomal-level genome of T. angustifolia, which had 15 pseudochromosomes, a size of 207 Mb, and a contig N50 length of 13.57 Mb. Genome duplication analyses detected no recent whole-genome duplication (WGD) event for T. angustifolia. An analysis of gene family expansion and contraction showed that T. angustifolia gained 1,310 genes and lost 1,426 genes. High-nitrogen-stress experiments showed that a high nitrogen level had a significant inhibitory effect on root growth and differential gene expression analyses using 24 samples found 128 differentially expressed genes (DEGs) between the nitrogen-treated and control groups. DEGs in the roots and leaves were enriched in alanines, aspartate, and glutamate metabolism, nitrogen metabolism, photosynthesis, phenylpropanoid biosynthesis, plant-pathogen interaction, and mitogen-activated protein kinase pathways, among others. This study provides genomic data for a medicinal and ecologically important herb and lays a theoretical foundation for plant-assisted water pollution remediation.

15.
Int J Med Robot ; 19(3): e2507, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36763095

ABSTRACT

INTRODUCTION: Robotic-assisted thoracic surgery (RATS) via subxiphoid incision may be superior in resection of multiple lung nodules. METHODS: Outcomes of robot-assisted one-stage bilateral lobectomy or segmentectomy via intercostal and subxiphoid incisions for multiple ground-glass opacities were analysed. RESULTS: Total 36 cases were analysed in this study. Thirteen cases had bilateral lobectomy + segmentectomy, 15 cases underwent bilateral segmentectomies, and 8 cases underwent lobectomy + segmentectomy + wedge resection. The average intraoperative blood loss was 110.2 ± 57.8 mL, operation time was 154 ± 64.2 min, thoracic draining time was 2.6 ± 3.2 days, and postoperative hospital stay was 4.8 ± 3.3 days. Three patients had atrial fibrillation and 3 patients had continuous air leakage for over 3 days, but there was no death or postoperative pain. CONCLUSION: Robot-assisted one-stage bilateral resection of multiple lung nodules through combination of intercostal and subxiphoid incision as a utility port is safe and reliable.


Subject(s)
Lung Neoplasms , Robotic Surgical Procedures , Robotics , Humans , Lung Neoplasms/surgery , Retrospective Studies , Lung/surgery , Thoracic Surgery, Video-Assisted
16.
RSC Adv ; 12(54): 35290-35299, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540231

ABSTRACT

Metal-organic frameworks (MOFs) are widely used in the adsorption separation of various gases. A fundamental understanding of the effective separation of xylene isomers helps improve aromatic products' separation efficiency and reduce industrial separation costs. Grand Canonical Monte Carlo (GCMC) simulations combined with Molecular Science is widely used to predict gas adsorption and diffusion in single crystals with metal-organic frameworks. We performed a GCMC + MD combined approach to study xylene isomers' adsorption and separation in Cu-HKUST-1 to predict the permeability and selectivity of the ternary gas mixture in the MOF with the adsorption and diffusion usage data. Most current studies take into account the computational cost and difficulty. Most recent research models are limited to the adsorption of a single or specific molecule, such as hydrogen, methane, carbon dioxide, etc. For this reason, we report an attempt to study the adsorption separation of aromatic gases (p-xylene/o-xylene/m-xylene) based on Cu-HKUST-1 single-crystal materials based on some previous research methods with an appropriate increase in computational cost. To predict the adsorption selectivity and permeability of the ternary mixture of xylene isomers on the MOF surface, the model simulation calculates key parameters of gas adsorption, including gas adsorption volume (N), the heat of adsorption (Q st), Henry coefficient (K), and diffusion coefficient (D).

18.
Water Res ; 221: 118744, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35728495

ABSTRACT

Waste activated sludge (WAS) contains high concentrations of microplastics (MPs), which could serve as vectors of various organic pollutants and heavy metals, causing synergistic transportation and pollution. The application of combined hydrothermal pretreatment (HTP) and anaerobic digestion (AD) has raised growing concerns since the low-temperature hydrothermal treatment could enhance the biogas production of WAS. However, the changes in physicochemical properties, adsorption performances, and effects on AD of MPs by HTP have not been studied. The study used three typical MPs in WAS, and it was found that the HTP (170°C & 30min) increased MPs' specific surface area and carbonyl index (CI) while decreasing the relative crystallinity. The adsorption capacity to Cd increased through the carbonylation for polyethylene microplastic (PE-MP) and polystyrene microplastic (PS-MP) while decreasing by the dechlorination for polyvinyl chloride microplastic (PVC-MP). Meanwhile, increased hydrophilicity reduced the adsorption capacities of all three typical MPs for ofloxacin. The above results indicated that the HTP could be worth blocking the adsorption of polar MPs for polar pollutants. For the pristine MPs, only PVC-MP at the highest concentration (0.5 g kg-1 VS) significantly (p < 0.05) reduced methane production by 16.2 ± 3.3% of WAS without the HTP. However, the HTP resulted in significant (p < 0.05) inhibition of methane production of WAS at high concentrations of PE-MP and PVC-MP (e.g., 0.1 and 0.5 g kg-1 VS), which was due to the acceleration of the released toxic plastic additives (dibutyl phthalate, dimethyl phthalate, and bisphenol-A). Microbial analysis showed the abundances of vital anaerobes, such as acid-producing bacteria (Acetoanerrobium and Mesotoga), proteolytic bacteria (Proteiniborus), and methanogens (Methanosaeta) clearly decreased with the PE-MP and PVC-MP after the HTP, which might result in the decreased methane production. The study provided deep-insight of MPs' behaviors during the combined HTP-AD process.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Adsorption , Anaerobiosis , Methane , Microplastics , Plastics , Polyethylene , Polyvinyl Chloride , Sewage
19.
Mol Biol Evol ; 39(5)2022 05 03.
Article in English | MEDLINE | ID: mdl-35438770

ABSTRACT

Land plants first evolved from freshwater algae, and flowering plants returned to water as early as the Cretaceous and multiple times subsequently. Alismatales is the largest clade of aquatic angiosperms including all marine angiosperms, as well as terrestrial plants. We used Alismatales to explore plant adaptations to aquatic environments by analyzing a data set that included 95 samples (89 Alismatales species) covering four genomes and 91 transcriptomes (59 generated in this study). To provide a basis for investigating adaptations, we assessed phylogenetic conflict and whole-genome duplication (WGD) events in Alismatales. We recovered a relationship for the three main clades in Alismatales as (Tofieldiaceae, Araceae) + core Alismatids. We also found phylogenetic conflict among the three main clades that was best explained by incomplete lineage sorting and introgression. Overall, we identified 18 putative WGD events across Alismatales. One of them occurred at the most recent common ancestor of core Alismatids, and three occurred at seagrass lineages. We also found that lineage and life-form were both important for different evolutionary patterns for the genes related to freshwater and marine adaptation. For example, several light- or ethylene-related genes were lost in the seagrass Zosteraceae, but are present in other seagrasses and freshwater species. Stomata-related genes were lost in both submersed freshwater species and seagrasses. Nicotianamine synthase genes, which are important in iron intake, expanded in both submersed freshwater species and seagrasses. Our results advance the understanding of the adaptation to aquatic environments and WGDs using phylogenomics.


Subject(s)
Alismatales , Magnoliopsida , Adaptation, Physiological/genetics , Alismatales/genetics , Biological Evolution , Magnoliopsida/genetics , Phylogeny , Plants
20.
Sci Total Environ ; 834: 155108, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35398128

ABSTRACT

Polylactic acid (PLA), an alternative to petroleum-based plastics, has been widely used in food packaging and disposable tableware for biodegradable properties. As a result, PLA fragments were often mixed with kitchen waste (KW) and disposed of together. This study aimed to assess the fate of polylactic acid microplastics (PMP) when co-digested with KW. The spiked PMP did not increase the methane yield of KW but had deformation and fragmentation at mesophilic and thermophilic conditions, respectively. Identification of physicochemical properties and leachates showed that the anaerobic digestion of the KW process caused the aging and fragmentation of PMP, including the generation of irregular cracking and tiny daughter particles, the increase of oxygen-containing functional groups, and the releasing of dissolved organic matters (DOM). The thermophilic anaerobic digestion with KW enhanced the aging and fragmentation of PMP to the highest degree, which was attributed to the high temperature and enriched microorganisms (Peptococcaceae, Tepidimicrobium, and Clostridium_sensu_stricto_7) in the biofilm. Clostridium_sensu_stricto_7 was only found in the anaerobic digestion with KW, which meant the KW anaerobic digestion could contribute to the enrichment of microorganisms that promoted the PMP degradation.


Subject(s)
Bioreactors , Plastics , Anaerobiosis , Biofilms , Dissolved Organic Matter , Methane/metabolism , Microplastics , Plastics/metabolism , Polyesters/metabolism , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...