Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 98(20): 8497-512, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25149446

ABSTRACT

Anthropogenic nitrogen oxides (NO x ) emitted from the fossil-fuel-fired power plants cause adverse environmental issues such as acid rain, urban ozone smoke, and photochemical smog. A novel chemical absorption-biological reduction (CABR) integrated process under development is regarded as a promising alternative to the conventional selective catalytic reduction processes for NO x removal from the flue gas because it is economic and environmentally friendly. CABR process employs ferrous ethylenediaminetetraacetate [Fe(II)EDTA] as a solvent to absorb the NO x following microbial denitrification of NO x to harmless nitrogen gas. Meanwhile, the absorbent Fe(II)EDTA is biologically regenerated to sustain the adequate NO x removal. Compared with conventional denitrification process, CABR not only enhances the mass transfer of NO from gas to liquid phase but also minimize the impact of oxygen on the microorganisms. This review provides the current advances of the development of the CABR process for NO x removal from the flue gas.


Subject(s)
Adsorption , Air Pollutants/chemistry , Air Pollutants/metabolism , Gases/chemistry , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Edetic Acid/chemistry , Ferrous Compounds/chemistry , Industrial Waste , Nitrogen/metabolism , Oxidation-Reduction
2.
Bioresour Technol ; 149: 184-90, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24099974

ABSTRACT

Biological reduction of Fe(III)EDTA is considered as the key step that limits the removal efficiency of the chemical absorption-biological reduction integrated system. In this study, the process rates of each reaction step under typical conditions (T=50°C, C FeII(EDTA)=1-5 mmol/L, CNO=0-500 ppm, CO2=1-10%, pH=7) were determined. Relevant kinetic constants including rate constants of absorption part and Michaelis-Menten kinetic constants of regeneration part were also obtained. On this basis, the theoretical process rates of each reaction step were predicted and compared in a steady state. The results confirmed that the removal rate of NO in this system is limited by the biological reduction of Fe(III)EDTA. Moreover, it indicated that increasing the concentration of total iron appropriately could enhance the bioreduction of Fe(III)EDTA.


Subject(s)
Environmental Restoration and Remediation/methods , Nitrates/isolation & purification , Nitrites/isolation & purification , Absorption , Biodegradation, Environmental , Edetic Acid/metabolism , Ferrous Compounds/metabolism , Kinetics , Nitric Oxide/isolation & purification , Oxidation-Reduction
3.
Environ Technol ; 34(17-20): 2691-9, 2013.
Article in English | MEDLINE | ID: mdl-24527631

ABSTRACT

In this study, performance evaluation for the gas-phase o-xylene removal using a xylene-acclimated biotrickling filter (BTF) was conducted. Substrate interactions during aerobic biodegradation of three poorly soluble compounds, both individually and in paired mixtures (namely, o-xylene and ethyl acetate, o-xylene and dichloromethane, which are common solvents used by pharmaceutical industry), were also investigated. Experimental results indicate that a maximum elimination capacity of 99.3 g x m(-3) x h(-1) (70% removal) was obtained at an o-xylene loading rate of 143.0 g x m(-3) x h(-1), while the top packing layer (one-third height of the three packing layers) only contributed about 13% to the total elimination capacity. Kinetic constants for o-xylene biodegradation and the pattern of o-xylene removal performance along the height of the BTF were obtained through the modified Michaelis-Menten kinetics and convection-diffusion reaction model, respectively. A reduction of removal efficiency in o-xylene (83.2-74.5% removal at a loading rate of 40.3 g x m(-3) x h(-1) for the total volatile organic compound (VOC) loading rate of 79 g x m(-3) x h(-1)) in the presence of ethyl acetate (100% removal) was observed, while enhanced o-xylene removal efficiency (71.6-78.6% removal at a loading rate of 45.1 g x m(-3) x h(-1) for the total VOC loading rate of 90 g x m(-3) x h(-1)) was achieved in the presence of dichloromethane (35.6% removal). This work shows that a BTF with xylene-acclimated microbial consortia has the ability to remove several poorly soluble compounds, which would advance the knowledge on the treatment of pharmaceutical VOC emissions.


Subject(s)
Filtration/instrumentation , Volatile Organic Compounds/isolation & purification , Xylenes/isolation & purification , Biodegradation, Environmental , Equipment Design , Microbial Consortia , Volatile Organic Compounds/metabolism , Xylenes/metabolism
4.
Bioresour Technol ; 102(17): 7707-12, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21700449

ABSTRACT

A mixed absorbent had been proposed to enhance the chemical absorption-biological reduction process for NO(x) removal from flue gas. The mole ratio of the absorbent of Fe(II)Cit to Fe(II)EDTA was selected to be 3. After the biofilm was formed adequately, some influential factors, such as the concentration of NO, O(2), SO(2) and EBRT were investigated. During the long-term running, the system could keep on a steady NO removal efficiency (up to 90%) and had a flexibility in the sudden changes of operating conditions when the simulated flue gas contained 100-500 ppm NO, 100-800 ppm SO(2), 1-5% (v/v) O(2), and 15% (v/v) CO(2). However, high NO concentration (>800 ppm) and relative short EBRT (<100s) had significant negative effect on NO removal. The results indicate that the new system by using mixed-absorbent can reduce operating costs in comparison with the single Fe(II)EDTA system and possesses great potential for scale-up to industrial applications.


Subject(s)
Edetic Acid/chemistry , Ferrous Compounds/chemistry , Filtration/methods , Gases/chemistry , Nitrogen Oxides/isolation & purification , Adsorption , Citric Acid , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL