Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 4(2): 244-250, 2019 02.
Article in English | MEDLINE | ID: mdl-30617347

ABSTRACT

The vast majority of bacteria, including human pathogens and microbiome species, lack genetic tools needed to systematically associate genes with phenotypes. This is the major impediment to understanding the fundamental contributions of genes and gene networks to bacterial physiology and human health. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a versatile method of blocking gene expression using a catalytically inactive Cas9 protein (dCas9) and programmable single guide RNAs, has emerged as a powerful genetic tool to dissect the functions of essential and non-essential genes in species ranging from bacteria to humans1-6. However, the difficulty of establishing effective CRISPRi systems across bacteria is a major barrier to its widespread use to dissect bacterial gene function. Here, we establish 'Mobile-CRISPRi', a suite of CRISPRi systems that combines modularity, stable genomic integration and ease of transfer to diverse bacteria by conjugation. Focusing predominantly on human pathogens associated with antibiotic resistance, we demonstrate the efficacy of Mobile-CRISPRi in gammaproteobacteria and Bacillales Firmicutes at the individual gene scale, by examining drug-gene synergies, and at the library scale, by systematically phenotyping conditionally essential genes involved in amino acid biosynthesis. Mobile-CRISPRi enables genetic dissection of non-model bacteria, facilitating analyses of microbiome function, antibiotic resistances and sensitivities, and comprehensive screens for host-microorganism interactions.


Subject(s)
Bacteria/genetics , Bacterial Proteins/genetics , Bacteriological Techniques/methods , CRISPR-Cas Systems , Genetic Techniques , Anti-Bacterial Agents/pharmacology , Bacteria/classification , Bacteria/drug effects , Bacterial Proteins/metabolism , Conjugation, Genetic , Drug Resistance, Microbial/genetics , Gene Library , Gene Regulatory Networks , Gene Targeting , Genes, Essential/genetics , Genome, Bacterial/genetics
2.
Cell ; 165(6): 1493-1506, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27238023

ABSTRACT

Essential gene functions underpin the core reactions required for cell viability, but their contributions and relationships are poorly studied in vivo. Using CRISPR interference, we created knockdowns of every essential gene in Bacillus subtilis and probed their phenotypes. Our high-confidence essential gene network, established using chemical genomics, showed extensive interconnections among distantly related processes and identified modes of action for uncharacterized antibiotics. Importantly, mild knockdown of essential gene functions significantly reduced stationary-phase survival without affecting maximal growth rate, suggesting that essential protein levels are set to maximize outgrowth from stationary phase. Finally, high-throughput microscopy indicated that cell morphology is relatively insensitive to mild knockdown but profoundly affected by depletion of gene function, revealing intimate connections between cell growth and shape. Our results provide a framework for systematic investigation of essential gene functions in vivo broadly applicable to diverse microorganisms and amenable to comparative analysis.


Subject(s)
Bacillus subtilis/genetics , Genes, Bacterial , Genes, Essential , CRISPR-Cas Systems , Gene Knockdown Techniques , Gene Library , Gene Regulatory Networks , Molecular Targeted Therapy
3.
Acc Chem Res ; 42(8): 1183-92, 2009 Aug 18.
Article in English | MEDLINE | ID: mdl-19435360

ABSTRACT

Sequencing of the human genome provided a wealth of information about the genomic blueprint of a cell. But genes do not tell the entire story of life and living processes; identifying the roles of enzymes and mapping out their interactions is also crucial. Enzymes catalyze virtually every cellular process and metabolic exchange. They not only are instrumental in sustaining life but also are required for its regulation and diversification. Diseases such as cancer can be caused by minor changes in enzyme activities. In addition, the unique enzymes of pathogenic organisms are ripe targets for combating infections. Consequently, nearly one-third of all current drug targets are enzymes. An estimated 18-29% of eukaryotic genes encode enzymes, but only a limited proportion of enzymes have thus far been characterized. Therefore, little is understood about the physiological roles, substrate specificity, and downstream targets of the vast majority of these important proteins. A key step toward the biological characterization of enzymes, as well as their adoption as drug targets, is the development of global solutions that bridge the gap in understanding these proteins and their interactions. We herein present technological advances that facilitate the study of enzymes and their properties in a high-throughput manner. Over the years, our group has introduced and developed a variety of such enabling platforms for many classes of enzymes, including kinases, phosphatases, and proteases. For each of these different types of enzymes, specific design considerations are required to develop the appropriate chemical tools to characterize each class. These tools include activity-based probes and chemical compound libraries, which are rapidly assembled using efficient combinatorial synthesis or "click chemistry" strategies. The resulting molecular assortments may then be screened against the target enzymes in high-throughput using microplates or microarrays. These techniques offer powerful means to study, profile, and discover potent small molecules that can modulate enzyme activity. This Account will describe the concepts involved in designing chemical probes and libraries for comparative enzyme screening and drug discovery applications, as well as highlight how these technologies are changing the way in which enzymes may be rapidly profiled and characterized.


Subject(s)
Enzymes/chemistry , Proteomics , Combinatorial Chemistry Techniques , Drug Design , Enzymes/metabolism , Humans , Microarray Analysis
4.
Nat Protoc ; 3(9): 1485-93, 2008.
Article in English | MEDLINE | ID: mdl-18772876

ABSTRACT

Protein phosphorylation and dephosphorylation play an important role in regulation of intracellular signal transduction pathways in the biological system. A key step in the biological characterization of phosphatases and their use as drug targets is the identification of their cellular partners and suitable substrates for potential inhibitor development. Herein we describe a microarray-based protocol to map the substrate specificity of protein Ser/Thr phosphatases. This protocol uses Pro-Q dye to sensitively and quantitatively detect the amount of dephosphorylation that occurs from many putative peptide substrates in parallel, and therefore could be used to generate the so-called peptide substrate fingerprints as well as detailed kinetic information of a target phosphatase. Excluding the synthesis of the peptide substrates, the whole protocol takes a total of 11 h to complete and in future can be readily extended to the study of other classes of phosphatases, i.e., protein tyrosine phosphatases.


Subject(s)
Protein Array Analysis/methods , Protein Serine-Threonine Kinases/chemistry , Signal Transduction/genetics , Phosphorylation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...