Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 209: 40-49, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37354759

ABSTRACT

The negative impacts of repeated superovulation on mitochondrial function and oocyte quality remain unresolved. Epicatechin (EC), a polyphenolic compound found in the human diet with strong antioxidant activity, was investigated for its effects and underlying mechanism on embryonic development after repeated superovulation. The results showed that as the number of superovulation cycles increased, the number of 2-cell embryos decreased, the development of embryos in subsequent in vitro culture was delayed, the apoptosis rate of blastocyst cells increased and the number of blastocyst cells decreased. However, intraperitoneal injection of EC (10 mg/kg body-weight) for two consecutive days during repeated superovulation increased mitochondrial DNA copies in 2-cell embryos of mice. It also promoted the expression of antioxidant enzyme genes in ovaries, increased the content of glutathione (GSH) content and improved the antioxidant capacity of ovaries. Altogether, these results revealed that intraperitoneal injection of EC could increase the embryonic mitochondrial DNA copy number (mtDNA-CN) and enhance the ovary's antioxidant capacity and GSH content, ultimately promoting the quality of mouse embryos in the process of repeated superovulation.


Subject(s)
Catechin , Superovulation , Pregnancy , Female , Mice , Humans , Animals , Catechin/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Oocytes/metabolism , DNA, Mitochondrial , Blastocyst/metabolism , Glutathione/metabolism
2.
Theriogenology ; 201: 83-94, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36857977

ABSTRACT

Follicular atresia is a normal physiological event in mammals, yet its mechanism remains to be studied. Granulosa cell (GC) autophagy is closely associated with follicular atresia. The N6-methyladenosine (m6A) modification is the most common post-transcriptional modification in eukaryotes, but its role in follicular atresia is still unknown. In this study, the possible relationship amongst follicular atresia, GC autophagy and m6A modification was studied. Our results showed that the level of autophagy in GCs increased with the degree of follicle atresia, whereas the overall m6A level decreased. Rapamycin treatment induced atresia in vitro cultured follicles, whereas 3-Methyladenine inhibited follicular atresia. Progressed atretic follicle (PAF) GCs had significantly lower METTL3 levels and significantly higher FTO levels than healthy follicle (HF) GCs. Differential gene expression analysis of GCs in PAF and HF by RNA sequencing was showed that the autophagy-related genes ULK1, ULK2, ATG2A, and ATG2B were significantly elevated in the PAF. In cultured GCs, overexpression of METTL3 significantly decreased the mRNA level of ULK1, as well as the autophagy level, whereas knockdown of METTL3 by RNAi significantly increased the mRNA level of ULK1, as well as the autophagy level. Our results indicate that m6A modification can regulate autophagy in GCs and play a role in the process of porcine follicular atresia.


Subject(s)
Follicular Atresia , Ovary , Animals , Female , Apoptosis/physiology , Autophagy/physiology , Follicular Atresia/metabolism , Granulosa Cells/metabolism , Mammals , Methylation , Ovary/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine , Methyltransferases
3.
Theriogenology ; 180: 113-120, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34971972

ABSTRACT

Theca cells (TCs) play an important role in follicular development and atresia. TCs synthesize androgens that act as substrate for granulosa cells aromatization to estrogens needed for follicular growth. However, the effects of hypoxia on steroidogenesis in buffalo TCs remain unclear. In the present study, the impacts of hypoxic conditions (5% oxygen) on androgen synthesis in buffalo TCs were examined. The results showed that hypoxia improved both the expression levels of androgen synthesis-related genes (CYP11A1, CYP17A1, and 3ß-HSD) and the secretion levels of testosterone in buffalo TCs. Hypoxic conditions promoted the sensitivity of buffalo TCs to LH. Furthermore, inhibition of PI3K/AKT signaling pathway reduced both the expression levels of androgen synthesis-related genes (CYP11A1, CYP17A1, and 3ß-HSD) and the secretion levels of testosterone in hypoxia-cultured buffalo TCs. Besides, inhibition of PI3K/AKT signaling pathway lowered the sensitivity of buffalo TCs to LH under hypoxic conditions. This study indicated that hypoxia enhanced the steroidogenic competence of buffalo TCs main through activating PI3K/AKT signaling pathway and subsequently facilitating the responsiveness of TCs to LH. This study provides a basis for further exploration of ovarian endocrine mechanism for steroidogenesis.


Subject(s)
Buffaloes , Theca Cells , Animals , Cells, Cultured , Female , Granulosa Cells , Hypoxia/veterinary , Phosphatidylinositol 3-Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...