Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12050, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802516

ABSTRACT

Micro-light-emitting diodes (Micro-LEDs) are a new type of display device based on the third-generation semiconductor gallium nitride (GaN) material which stands out for its high luminous efficiency, elevated brightness, short response times, and high reliability. The contact between anode layers and P-GaN is one of the keys to improving the performance of the devices. This study investigates the impact of electrode structure design and optimized annealing conditions on the anode contact performance of devices. The Micro-LED device with the size of 9.1 µm whose electrode structure is ITO/Ti/Al/Ni/Cr/Pt/Au (100/50/350/100/500/500/5000 Å) exhibits a significant improvement in contact performance after annealing under the Ar gas atmosphere at 500 °C for 5 min. The optimized device exhibited a current of 10.9 mA and a brightness of 298,628 cd/m2 under 5 V. The EQE peak value of Device A is 10.06% at 400 mA.

2.
Microbiol Res ; 282: 127629, 2024 May.
Article in English | MEDLINE | ID: mdl-38330819

ABSTRACT

Apart from its role in translation, codon bias is also an important mechanism to regulate mRNA levels. The traditional frequency-based codon optimization strategy is rather efficient in organisms such as N. crassa, but much less in yeast P. pastoris which is a popular host for heterologous protein expression. This is because that unlike N. crassa, the preferred codons of P. pastoris are actually AU-rich and hence codon optimization for extremely low GC content comes with issues of pre-mature transcriptional termination or low RNA stability in spite of translational advantages. To overcome this bottleneck, we focused on three reporter genes in P. pastoris first and confirmed the great advantage of GC-prone codon optimization on mRNA levels. Then we altered the codon bias profile of P. pastoris by introducing additional rare tRNA gene copies. Prior to that we constructed IPTG-regulated tRNA species to enable chassis cells to switch between different codon bias status. As demonstrated again with reporter genes, protein yield of luc and 0788 was successfully increased by 4-5 folds in chassis cells. In summary, here we provide an alternative codon optimization strategy for genes with unsatisfactory performance under traditional codon frequency-based optimization.


Subject(s)
Codon Usage , Pichia , Pichia/genetics , Codon/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Recombinant Proteins/genetics
3.
Nanoscale Res Lett ; 15(1): 20, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31993763

ABSTRACT

Tantalum disulfide (TaS2) two-dimensional film material has attracted wide attention due to its unique optical and electrical properties. In this work, we report the preparation of 1 T-TaS2 quantum dots (1 T-TaS2 QDs) by top-down method. Herein, we prepared the TaS2 QDs having a monodisperse grain size of around 3 nm by an effective ultrasonic liquid phase exfoliation method. Optical studies using UV-Vis, PL, and PLE techniques on the as-prepared TaS2 QDs exhibited ultraviolet absorption at 283 nm. Furthermore, we found that dimension reduction of TaS2 has led to a modification of the band gap, namely a transition from indirect to direct band gap, which is explained using first-principle calculations. By using quinine as reference, the fluorescence quantum yield is 45.6%. Therefore, our results suggest TaS2 QDs have unique and extraordinary optical properties. Moreover, the low-cost, facile method of producing high quality TaS2 QDs in this work is ideal for mass production to ensure commercial viability of devices based on this material. TaS2 quantum dots having a monodisperse grain size of around 3 nm have been prepared by an ultrasonic liquid phase exfoliation method, it has been found that the dimension reduction of TaS2 has led to a transition from indirect to direct band gap that results in the unique and extraordinary optical properties (PL QY: 45.6%).

SELECTION OF CITATIONS
SEARCH DETAIL
...