Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.010
Filter
1.
Front Med (Lausanne) ; 11: 1409534, 2024.
Article in English | MEDLINE | ID: mdl-38841589

ABSTRACT

Purpose: Osteoporosis represents a profound challenge to public health, underscoring the critical need to dissect its complex etiology and identify viable targets for intervention. Within this context, the gut microbiota has emerged as a focal point of research due to its profound influence on bone metabolism. Despite this growing interest, the literature has yet to see a bibliometric study addressing the gut microbiota's contribution to both the development and management of osteoporosis. This study aims to fill this gap through an exhaustive bibliometric analysis. Our objective is to uncover current research hotspots, delineate key themes, and identify future research trends. In doing so, we hope to provide direction for future studies and the development of innovative treatment methods. Methods: Relevant publications in this field were retrieved from the Web of Science Core Collection database. We used VOSviewer, CiteSpace, an online analysis platform and the R package "Bibliometrix" for bibliometric analysis. Results: A total of 529 publications (including 351 articles and 178 reviews) from 61 countries, 881 institutions, were included in this study. China leads in publication volume and boast the highest cumulative citation. Shanghai Jiao Tong University and Southern Medical University are the leading research institutions in this field. Nutrients contributed the largest number of articles, and J Bone Miner Res is the most co-cited journal. Of the 3,166 scholars who participated in the study, Ohlsson C had the largest number of articles. Li YJ is the most co-cited author. "Probiotics" and "inflammation" are the keywords in the research. Conclusion: This is the first bibliometric analysis of gut microbiota in osteoporosis. We explored current research status in recent years and identified frontiers and hot spots in this research field. We investigate the impact of gut microbiome dysregulation and its associated inflammation on OP progression, a topic that has garnered international research interest in recent years. Additionally, our study delves into the potential of fecal microbiota transplantation or specific dietary interventions as promising avenues for future research, which can provide reference for the researchers who focus on this research filed.

2.
Heliyon ; 10(9): e30670, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765093

ABSTRACT

Establishing a deep learning model for transformer fault diagnosis using transformer oil chromatogram data requires a large number of fault samples. The lack and imbalance of oil chromatogram data can lead to overfitting, lack of representativeness of the model, and unsatisfactory prediction results on test set data, making it difficult to accurately diagnose transformer faults. A conditional Wasserstein generative adversarial network with gradient penalty optimization (CWGAN-GP) is adopted in this paper, which based on gradient penalty optimization and expand the oil chromatography fault samples of 500 sets of transformer oil chromatography data with 5 types of faults. The proposed method is used to classify transformer faults using a deep autoencoder, and the sample quality of the neural network model proposed in this paper is compared with several other variants of generative adversarial neural network models. The research results show that after using the method proposed in this paper for sample expansion, the overall accuracy of fault diagnosis can reach 93.2 %, which is 4.98 % higher than the original imbalanced samples. Compared with other sample expansion methods, the accuracy of fault diagnosis of the algorithm in this paper is improved by 1.70 %-3.05 %.

3.
Cancer Lett ; 592: 216926, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38714291

ABSTRACT

Gastric cancer (GC) is one of the most common cancer worldwide. Neural invasion (NI) is considered as the symbiotic interaction between nerves and cancers, which strongly affects the prognosis of GC patients. Small extracellular vesicles (sEVs) play a key role in intercellular communication. However, whether sEVs mediate GC-NI remains unexplored. In this study, sEVs release inhibitor reduces the NI potential of GC cells. Muscarinic receptor M3 on GC-derived sEVs regulates their absorption by neuronal cells. The enrichment of sEV-circVAPA in NI-positive patients' serum is validated by serum high throughput sEV-circRNA sequencing and clinical samples. sEV-circVAPA promotes GC-NI in vitro and in vivo. Mechanistically, sEV-circVAPA decreases SLIT2 transcription by miR-548p/TGIF2 and inhibits SLIT2 translation via binding to eIF4G1, thereby downregulates SLIT2 expression in neuronal cells and finally induces GC-NI. Together, this work identifies the preferential absorption mechanism of GC-derived sEVs by neuronal cells and demonstrates a previously undefined role of GC-derived sEV-circRNA in GC-NI, which provides new insight into sEV-circRNA based diagnostic and therapeutic strategies for NI-positive GC patients.


Subject(s)
Extracellular Vesicles , Intercellular Signaling Peptides and Proteins , Neoplasm Invasiveness , Nerve Tissue Proteins , Neurons , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Extracellular Vesicles/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Animals , Neurons/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Female , Cell Proliferation , Repressor Proteins/genetics , Repressor Proteins/metabolism
4.
Circ Genom Precis Med ; : e004320, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804128

ABSTRACT

BACKGROUND: Substantial data support a heritable basis for supraventricular tachycardias, but the genetic determinants and molecular mechanisms of these arrhythmias are poorly understood. We sought to identify genetic loci associated with atrioventricular nodal reentrant tachycardia (AVNRT) and atrioventricular accessory pathways or atrioventricular reciprocating tachycardia (AVAPs/AVRT). METHODS: We performed multiancestry meta-analyses of genome-wide association studies to identify genetic loci for AVNRT (4 studies) and AVAP/AVRT (7 studies). We assessed evidence supporting the potential causal effects of candidate genes by analyzing relations between associated variants and cardiac gene expression, performing transcriptome-wide analyses, and examining prior genome-wide association studies. RESULTS: Analyses comprised 2384 AVNRT cases and 106 489 referents, and 2811 AVAP/AVRT cases and 1,483 093 referents. We identified 2 significant loci for AVNRT, which implicates NKX2-5 and TTN as disease susceptibility genes. A transcriptome-wide association analysis supported an association between reduced predicted cardiac expression of NKX2-5 and AVNRT. We identified 3 significant loci for AVAP/AVRT, which implicates SCN5A, SCN10A, and TTN/CCDC141. Variant associations at several loci have been previously reported for cardiac phenotypes, including atrial fibrillation, stroke, Brugada syndrome, and electrocardiographic intervals. CONCLUSIONS: Our findings highlight gene regions associated with ion channel function (AVAP/AVRT), as well as cardiac development and the sarcomere (AVAP/AVRT and AVNRT) as important potential effectors of supraventricular tachycardia susceptibility.

5.
medRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766240

ABSTRACT

Central serous chorioretinopathy (CSC) is a fluid maculopathy whose etiology is not well understood. Abnormal choroidal veins in CSC patients have been shown to have similarities with varicose veins. To identify potential mechanisms, we analyzed genotype data from 1,477 CSC patients and 455,449 controls in FinnGen. We identified an association for a low-frequency (AF=0.5%) missense variant (rs113791087) in the gene encoding vascular endothelial protein tyrosine phosphatase (VE-PTP) (OR=2.85, P=4.5×10-9). This was confirmed in a meta-analysis of 2,452 CSC patients and 865,767 controls from 4 studies (OR=3.06, P=7.4×10-15). Rs113791087 was associated with a 56% higher prevalence of retinal abnormalities (35.3% vs 22.6%, P=8.0×10-4) in 708 UK Biobank participants and, surprisingly, with varicose veins (OR=1.31, P=2.3×10-11) and glaucoma (OR=0.82, P=6.9×10-9). Predicted loss-of-function variants in VEPTP, though rare in number, were associated with CSC in All of Us (OR=17.10, P=0.018). These findings highlight the significance of VE-PTP in diverse ocular and systemic vascular diseases.

6.
J Am Chem Soc ; 146(22): 15576-15586, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38753821

ABSTRACT

Selective synthesis of chiral bridged (hetero)bicyclic scaffolds via asymmetric C-H activation constitutes substantial challenges due to the multiple reactivities of strained bicyclic structures. Herein, we develop the domino transformations through an unprecedented cobalt-catalyzed enantioselective C-H activation/nucleophilic [3 + 2] annulation with symmetrical bicyclic alkenes. The methods offer straightforward access to a wide range of chiral molecules bearing [2.2.1]-bridged bicyclic cores with four and five consecutive stereocenters in a single step. Two elaborate salicyloxazoline (Salox) ligands were synthesized based on the rational design and mechanistic understanding. The well-defined chiral pockets generated from asymmetric coordination around the trivalent cobalt catalyst direct the orientation of bicyclic alkenes, leading to excellent enantioselectivity.

7.
Article in English | MEDLINE | ID: mdl-38734885

ABSTRACT

Polyethylene glycol modification (PEGylation) is a widely used strategy to improve the physicochemical properties of various macromolecules, especially protein drugs. However, its application in enhancing the performance of enzymes for molecular biology remains underexplored. This study explored the PEGylation of Bst DNA polymerase, determining optimal modification reaction conditions. In comparison to the unmodified wild-type counterpart, the modified Bst DNA polymerase exhibited significantly improved of activity, thermal stability and inhibitor tolerance during loop-mediated isothermal amplification (LAMP). When applied for the detection of Salmonella in crude samples, the modified enzyme demonstrated a notably accelerated reaction rate. Therefore, PEGylation emerges as a viable strategy for refining DNA polymerases, helping in the development of novel molecular diagnostic reagents.

8.
Int J Surg ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38597396

ABSTRACT

OBJECTIVE: Negative remodeling of the distal aorta following proximal repair for acute aortic dissection has garnered growing attention. This clinical scenario has spurred the development of techniques and devices. A multicenter, prospective, and randomized controlled study was conducted with the aim of confirming the safety and effectiveness of a newly-designed flowdynamics dense mesh stent for the treatment of residual dissection after proximal repair. METHODS: Patients with nonchronic residual dissection affecting visceral branches were prospectively enrolled at three centers and randomly allocated to either the FDMS group or the control group. Primary endpoints encompassed all-cause and aortic-related mortality, while the patency of branch arteries is indeed a key focal metric. Morphological changes (diameter, area, and volume) were analyzed to demonstrate the therapeutic effect. RESULTS: 112 patients were recruited in the clinical trial, and 103 patients completed the 12-month follow-up. The rate of freedom from all-cause and aortic-related death in the FDMS group was 94.64% and 100%, respectively. All visceral branches remained patent. The FDMS group exhibited a substantial expansion in TL and a notable shrinkage in FL at the planes below renal arteries (ΔArea TL: FDMS vs. Control, 0.74±0.46 vs. 0.34±0.66 cm2, P<0.001; ΔArea FL: FDMS vs. Control, -0.72±1.26 vs. -0.12±0.86 cm, P = 0.01) and 5 cm below renal arteries (ΔArea TL: FDMS vs. Control, 1.06±0.75 vs. 0.16±0.63 cm2, P<0.001; ΔArea FL: FDMS vs. Control, -0.53±1.43 vs. -0.25±1.00 cm, P = 0.27). Meanwhile, the FDMS group demonstrated an increase of 22.55±11.14 cm3 in TL (P<0.001) and a corresponding reduction of 21.94±11.77 cm3 in FL (P=0.08). CONCLUSIONS: This newly-designed FDMS for endovascular repair of residual dissection following the proximal repair is demonstrated to be safe and effective at 12 months.

9.
Phys Rev Lett ; 132(14): 146002, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38640381

ABSTRACT

The newly discovered high-temperature superconductivity in La_{3}Ni_{2}O_{7} under pressure has attracted a great deal of attention. The essential ingredient characterizing the electronic properties is the bilayer NiO_{2} planes coupled by the interlayer bonding of 3d_{z^{2}} orbitals through the intermediate oxygen atoms. In the strong coupling limit, the low-energy physics is described by an intralayer antiferromagnetic spin-exchange interaction J_{∥} between 3d_{x^{2}-y^{2}} orbitals and an interlayer one J_{⊥} between 3d_{z^{2}} orbitals. Taking into account Hund's rule on each site and integrating out the 3d_{z^{2}} spin degree of freedom, the system reduces to a single-orbital bilayer t-J model based on the 3d_{x^{2}-y^{2}} orbital. By employing the slave-boson approach, the self-consistent equations for the bonding and pairing order parameters are solved. Near the physically relevant 1/4-filling regime (doping δ=0.3∼0.5), the interlayer coupling J_{⊥} tunes the conventional single-layer d-wave superconducting state to the s-wave one. A strong J_{⊥} could enhance the interlayer superconducting order, leading to a dramatically increased T_{c}. Interestingly, there could exist a finite regime in which an s+id state emerges.

10.
Plant Cell Rep ; 43(5): 133, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687356

ABSTRACT

KEY MESSAGE: RTH may activate Fe assimilation related genes to promote Fe absorption, transport and accumulation in Arabidopsis. Iron (Fe) is an important nutrient element. The Fe absorption and transport in plants are well investigated over the past decade. Our previous work indicated that RTE1-HOMOLOG (RTH), the homologous gene of reversion-to-ethylene sensitivity 1 (RTE1), plays a role in ethylene signaling pathway. However, its function in Fe absorption and transport is largely unknown. In the present study, we found that RTH was expressed in absorptive tissue and conducting tissue, including root hairs, root vascular bundle, and leaf veins. Under high Fe concentration, the seedling growth of rth-1 mutant was better, while the RTH overexpression lines were retarded compared to the wild type (Col-0). When treated with EDTA-Fe3+ (400 µM), the chlorophyll content and ion leakage rate were higher and lower in rth-1 than those of Col-0, respectively. By contrast, the chlorophyll contents and ion leakage rates of RTH overexpression lines were decreased and hastened compared with Col-0, respectively. Fe measurement indicated that the Fe contents of rth-1 were lower than those of Col-0, whereas those of RTH overexpression lines were comparably higher. Gene expression analysis revealed that Fe absorption and transport genes AHA2, IRT1, FIT, FPN1, and YSL1 decreased in rth-1 but increased in RTH overexpression lines compared with Col-0. Additionally, Y2H (yeast two-hybrid) and BiFC (bimolecular fluorescence complementation) assays showed that RTH can physically interact with hemoglobin 1 (HB1) and HB2. All these findings suggest that RTH may play an important role in regulation of Fe absorption, transport, and accumulation in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Iron , Arabidopsis/genetics , Arabidopsis/metabolism , Iron/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Biological Transport , Plant Roots/metabolism , Plant Roots/genetics , Chlorophyll/metabolism , Seedlings/genetics , Seedlings/metabolism , Seedlings/growth & development , Plants, Genetically Modified
11.
Dalton Trans ; 53(17): 7605-7610, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38618719

ABSTRACT

Developing high performance noble-metal-free electrocatalysts as an alternative to Pt-based catalysts for the oxygen reduction reaction (ORR) in energy conversion devices is highly desirable. We report herein the preparation of a coordination-polymer (CP)-derived Fe/CP/C composite as an electrocatalyst for the ORR with excellent activity and stability both in solution and in Zn-air batteries. The Fe/CP/C catalyst was obtained from the pyrolysis of an iron porphyrin Fe(TPP)Cl (5,10,15,20-tetraphenyl-21H,23H-porphyrin iron(III) chloride) grafted Zn-coordination polymer with dangling functional groups 4,4'-oxybisbenzoic acid and 4,4'-bipyridine ligands. The Fe/CP/C catalyst showed much higher ORR activity with a half-wave potential (E1/2) of 0.90 V (vs. RHE) than the Fe/C catalyst (E1/2 = 0.85 V) derived from the carbon-black-supported Fe porphyrins in 0.1 M KOH solution. When Fe/CP/C was used as the cathode electrocatalyst in Zn-air batteries (ZABs), the ZABs achieved a significantly higher open circuit voltage (OCV = 1.43 V) and maximum power density (Pmax = 142.8 mW cm-2) compared with Fe/C (OCV = 1.38 V, Pmax = 104.5 mW cm-2) and commercial 20 wt% Pt/C (OCV = 1.41 V, Pmax = 117.6 mW cm-2). Using dangling functional groups in CP to increase the loading efficiency of iron porphyrins offered a facile method to prepare high-performance noble-metal-free electrocatalysts for the ORR, which may provide promising applications to energy conversion devices.

12.
Mol Pain ; 20: 17448069241252654, 2024.
Article in English | MEDLINE | ID: mdl-38658141

ABSTRACT

Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. Mitochondrial-derived peptide (MOTS-c), a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. We found that endogenous MOTS-c levels in plasma and spinal dorsal horn were significantly lower in STZ-treated mice than in control animals. Accordingly, MOTS-c treatment significantly improves STZ-induced weight loss, elevation of blood glucose, mechanical allodynia, and thermal hyperalgesia; however, these effects were blocked by dorsomorphin, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor. In addition, MOTS-c treatment significantly enhanced AMPKα1/2 phosphorylation and PGC-1α expression in the lumbar spinal cord of PDN mice. Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.


Subject(s)
Diabetic Neuropathies , Hyperalgesia , Mitochondria , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Streptozocin , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/pathology , Male , Mitochondria/metabolism , Mitochondria/drug effects , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Mice, Inbred C57BL , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Peptides/pharmacology , Mice , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Microglia/drug effects , Microglia/metabolism
13.
Sci Total Environ ; 931: 172714, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38679108

ABSTRACT

Understanding the responses of soybean rhizosphere and functional microbiomes in intercropping scenarios holds promise for optimizing nitrogen utilization in legume-based intercropping systems. This study investigated three cropping layouts under film mulching: sole soybean (S), soybean-maize intercropping in one row (IS), and soybean-maize intercropping in two rows (IIS), each subjected to two nitrogen levels: 110 kg N ha-1 (N110) and 180 kg N ha-1 (N180). Our findings reveal that cropping patterns alter bacterial and nifh communities, with approximately 5 % of soybean rhizosphere bacterial amplicon sequence variants (ASVs) and 42 % of rhizosphere nifh ASVs exhibiting altered abundances (termed sensitive ASVs). Root traits and soil properties shape these communities, with root traits exerting greater influence. Sensitive ASVs drive microbial co-occurrence networks and deterministic processes, predicting 85 % of yield variance and 78 % of partial factor productivity of nitrogen, respectively. These alterations impact bacterial and nifh diversity, complexity, stability, and deterministic processes in legume-based intercropping systems, enhancing performance in terms of yield, nitrogen utilization efficiency, land equivalent ratio, root nodule count, and nodule dry weight under IIS patterns with N110 compared to other treatments. Our findings underscore the importance of field management practices in shaping rhizosphere-sensitive ASVs, thereby altering microbial functions and ultimately impacting the productivity of legume-based intercropping systems. This mechanistic understanding of soybean rhizosphere microbial responses to intercropping patterns offers insights for sustainable intercropping enhancements through microbial manipulation.


Subject(s)
Agriculture , Glycine max , Microbiota , Rhizosphere , Soil Microbiology , Glycine max/microbiology , Glycine max/growth & development , Agriculture/methods , Nitrogen/metabolism , Crop Production/methods , Plant Roots/microbiology , Bacteria/metabolism
14.
Updates Surg ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530611

ABSTRACT

This study attempted to compare the prognostic performance of lymph node ratio (LNR) staging system with different cutoff values relative to American Joint Committee on Cancer (AJCC) pN staging system in stage III colorectal cancer (CRC). Overall, 45,069 patients from the SEER dataset and 69 patients from the Second Affiliated Hospital of Nanjing Medical University (the External set) who underwent surgical resection of the primary tumor and were diagnosed with stage III CRC by postoperative pathology were included. Patients were divided into three subgroups based on the LNR cutoff used in previous studies, Kaplan-Meier curves were plotted, and log-rank test was used to compare the differences among groups in terms of cancer-specific survival (CSS). Cox regression model was applied for survival analysis. To evaluate the discriminatory power of different lymph node staging systems, Harrell's C statistic(C-index) and Akaike's Information Criterion (AIC) were applied. A set of optimal cutoff values (0.11; 0.36; 0.66) of LNR staging system with the most considerable discriminatory power to the prognosis in patients with stage III CRC (SEER set: C-index = 0.714; AIC = 58,942.46, External set: C-index = 0.809; AIC = 164.36) were obtained, and both were superior to the AJCC pN staging system (SEER set: C-index = 0.708; AIC = 59,071.20, External set: C-index = 0.788; AIC = 167.06). For evaluating the prognostic efficacy of patients with stage III colorectal cancer, the cutoff value (0.11; 0.36; 0.66) of LNR staging system had the best discrimination and prognostic ability, which was superior to LNR staging system under other cutoff values and AJCC pN staging system.

15.
Article in English | MEDLINE | ID: mdl-38492560

ABSTRACT

OBJECTIVES: The primary objective of this research was to evaluate the safety and feasibility of an innovative double-branched stent graft system employing four-stage deployment technology for aortic arch repair in porcine models. METHODS: The double-branched stent graft system consisted of a proximal polyester artificial blood vessel, the main and double-branched stent grafts and a delivery system. We utilized 12 healthy pigs as experimental animals (6 per group). Postimplantation, samples were collected at 90 and 180 days after the operations. Preoperative and postoperative imaging and intraoperative arterial blood gas analyses were performed. After the pigs were euthanized, the implanted product, surrounding tissue and major organs were collected for pathological analysis. RESULTS: The technical success rate of the stent graft implants was 100% (12/12). All animals survived to the experimental end point. Perioperative assessments showed intact stent grafts, and imaging features at the end of the follow-up period revealed neither endoleak nor device migration. No major adverse cardiovascular events were observed during the postoperative follow-up period. Pathological examinations confirmed the satisfactory biocompatibility of the stent graft. CONCLUSIONS: This innovative double-branched stent graft system with four-stage deployment technology was affirmed as a safe and feasible option for aortic arch repair in accordance with our preclinical evaluation with porcine models.

17.
ACS Appl Mater Interfaces ; 16(13): 16120-16131, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38511936

ABSTRACT

Owing to the strong basicity and reactivity, residual sodium compounds (RSCs) on the surface of Na-based layered oxides for sodium-ion batteries (SIBs) cause the deterioration of the electrochemical performance and processability of the oxide cathode materials. Herein, considering P2-type Na0.66Ni0.26Zn0.07Mn0.67O2 as the model material, the water-washing treatment is proven to be a facile, economic, and highly efficient method to improve the electrochemical performance of P2-type Ni/Mn-based layered oxides. Experimental results show that RSCs on material surfaces can be effectively removed by water washing without causing severe damage to the bulk structure. Notably, water washing triggers the formation of an ultrathin (2-3 nm thick) Na-poor disordered interfacial layer on the surface of Na0.66Ni0.26Zn0.07Mn0.67O2. This layer plays a passivating role in further enhancing the material's resistance to water and reduces the reactivity of the material surface with the electrolyte. These compositional and structural optimizations for P2-type Na0.66Ni0.26Zn0.07Mn0.67O2 effectively suppress the release of gaseous CO2, formation of thick cathode-electrolyte interphase films, and consumption of active Na+, enabling good Na+ transport kinetics during cycling. The water-washed Na0.66Ni0.26Zn0.07Mn0.67O2 exhibits significantly improved cycling stability with a capacity retention of 89.1% at 100 mA g-1 after 100 cycles and rate capability with a discharge capacity of 76.3 mA g-1 at 2000 mA g-1; these values are higher than those of the unwashed Na0.66Ni0.26Zn0.07Mn0.67O2 (83.3%, 71.4 mA h g-1). This work provides fundamental insights into the detrimental effect of RSCs on the electrochemical performance of layered oxides and highlights the importance of regulating interfacial compositions for developing high-performance layered-oxide cathode materials for SIBs.

18.
Fa Yi Xue Za Zhi ; 40(1): 30-36, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500458

ABSTRACT

OBJECTIVES: To establish a rapid screening method for 34 emerging contaminants in surface water by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF-MS). METHODS: The pretreatment conditions of solid phase extraction (SPE) were optimized by orthogonal experimental design and the surface water samples were concentrated and extracted by Oasis® HLB and Oasis® MCX SPE columns in series. The extracts were separated by Kinetex® EVO C18 column, with gradient elution of 0.1% formic acid aqueous solution and 0.1% formic acid methanol solution. Q-TOF-MS 'fullscan' and 'targeted MS/MS' modes were used to detect 34 emerging contaminants and to establish a database with 34 emerging contaminants precursor ion, product ion and retention times. RESULTS: The 34 emerging contaminants exhibited good linearity in the concentration range respectively and the correlation coefficients (r) were higher than 0.97. The limit of detection was 0.2-10 ng/L and the recoveries were 81.2%-119.2%. The intra-day precision was 0.78%-18.70%. The method was applied to analyze multiple surface water samples and 6 emerging contaminants were detected, with a concentration range of 1.93-157.71 ng/L. CONCLUSIONS: The method is simple and rapid for screening various emerging contaminants at the trace level in surface water.


Subject(s)
Tandem Mass Spectrometry , Water , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Formates , Solid Phase Extraction/methods
19.
iScience ; 27(4): 109350, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38500820

ABSTRACT

Colorectal cancer (CRC) ranks as the second leading cause of cancer-related mortality, with metastasis being the primary determinant of poor prognosis in patients. Investigating the molecular mechanisms underlying CRC metastasis is currently a prominent and challenging area of research. Exosomes, as crucial intercellular communication mediators, facilitate the transfer of metabolic and genetic information from cells of origin to recipient cells. Their roles in mediating information exchange between CRC cells and immune cells, fibroblasts, and other cell types are pivotal in reshaping the tumor microenvironment, regulating key biological processes such as invasion, migration, and formation of pre-metastatic niche. This article comprehensively examines the communication function and mechanism of exosomes derived from different cells in cancer metastasis, while also presenting an outlook on current research advancements and future application prospects. The aim is to offer a distinctive perspective that contributes to accurate diagnosis and rational treatment strategies for CRC.

20.
Int J Surg ; 110(4): 2134-2140, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38466083

ABSTRACT

AIM: A new simulation model and training curriculum for laparoscopic bilioenteric anastomosis has been developed. Currently, this concept lacks evidence for the transfer of skills from simulation to clinical settings. This study was conducted to determine whether training with a three-dimensional (3D) bilioenteric anastomosis model result in greater transfer of skills than traditional training methods involving video observation and a general suture model. METHODS: Fifteen general surgeons with no prior experience in laparoscopic biliary-enteric anastomosis were included in this study and randomised into three training groups: video observation only, practice using a general suture model, and practice using a 3D-printed biliary-enteric anastomosis model. Following five training sessions, each surgeon was asked to perform a laparoscopic biliary-enteric anastomosis procedure on an isolated swine organ model. The operative time and performance scores of the procedure were recorded and compared among the three training groups. RESULTS: The operation time in the 3D-printed model group was significantly shorter than the suture and video observation groups ( P =0.040). Furthermore, the performance score of the 3D-printed model group was significantly higher than those of the suture and video observation groups ( P =0.001). Finally, the goal score for laparoscopic biliary-enteric anastomosis in the isolated swine organ model was significantly higher in the 3D model group than in the suture and video observation groups ( P =0.004). CONCLUSIONS: The utilisation of a novel 3D-printed model for simulation training in laparoscopic biliary-enteric anastomosis facilitates improved skill acquisition and transferability to an animal setting compared with traditional training techniques.


Subject(s)
Anastomosis, Surgical , Clinical Competence , Laparoscopy , Printing, Three-Dimensional , Simulation Training , Anastomosis, Surgical/education , Anastomosis, Surgical/methods , Laparoscopy/education , Simulation Training/methods , Animals , Swine , Humans , Models, Anatomic , Biliary Tract Surgical Procedures/education , Biliary Tract Surgical Procedures/methods , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...