Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Oncol Rep ; 52(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38847271

ABSTRACT

Subsequently to the publication of the article, an interested reader drew to the authors' attention that, in Fig. 2A on p. 5, the 'Control  (24 h)' and 'MTH­3 (1 µM; 24 h)' data panels contained partially overlapping data, such that they appeared to have been derived from the same original source. The authors have examined their original data, and realized that this error arose inadvertently as a consequence of having compiled this figure incorrectly. The revised version of Fig. 2, featuring the data from one of the repeated experiments in Fig. 2A, is shown below. The revised data shown for this figure do not affect the overall conclusions reported in the paper. The authors apologize to the Editor of Oncology Reports and to the readership for any inconvenience caused. [Oncology Reports 46: 133, 2021; DOI: 10.3892/or.2021.8084].

2.
Int J Sports Physiol Perform ; 19(7): 637-644, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38702046

ABSTRACT

PURPOSE: Successful participation in taekwondo (TKD) requires athletes to possess quick decision-making abilities and demonstrate technical proficiency during competition. Dehydration, occurring during both training and competition, is widely recognized to have various negative effects. METHODS: This study investigated the impact of different levels of dehydration on cognitive function, as measured by the Vienna Test System, and the specific performance of kicking techniques among TKD athletes. Using a randomized crossover design, 12 participants were involved in the study. Before and after 1 hour of training at 80% of maximal heart rate, participants were weighed and provided urine samples. All participants were randomly assigned to 3 different hydration conditions: the euhydrated (EUH) group had unrestricted access to fluid consumption, while the hypohydrated (HYP) and severely HYP (S-HYP) groups experienced reductions of 2.0% and 4.0% of their initial body weight, respectively. RESULTS: The EUH group exhibited better reaction speed in reaction-time test-form S1 than the HYP and S-HYP groups. Notably, the EUH group demonstrated a significantly higher success rate in the front-side kick (EUH 98%, HYP 90%, S-HYP 88%; P < .05). However, the success rates of back roundhouse kick and free head kick were similar among the 3 statuses. Furthermore, postexercise heart rates were found to be significantly higher in the HYP and S-HYP groups compared with the EUH group. CONCLUSIONS: This study provides insight into the negative effects of dehydration on cognitive function and TKD-specific performance. It is recommended that TKD athletes maintain optimal hydration levels during training and competition to ensure optimal performance.


Subject(s)
Athletic Performance , Cognition , Cross-Over Studies , Dehydration , Martial Arts , Reaction Time , Humans , Martial Arts/physiology , Dehydration/physiopathology , Cognition/physiology , Young Adult , Male , Athletic Performance/physiology , Athletic Performance/psychology , Female , Heart Rate/physiology , Adult
3.
World J Gastrointest Oncol ; 16(4): 1319-1333, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660662

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) is a highly malignant biliary tract cancer with poor prognosis. Previous studies have implicated the gut microbiota in CCA, but evidence for causal mechanisms is lacking. AIM: To investigate the causal relationship between gut microbiota and CCA risk. METHODS: We performed a two-sample mendelian randomization study to evaluate potential causal associations between gut microbiota and CCA risk using genome-wide association study summary statistics for 196 gut microbial taxa and CCA. Genetic variants were used as instrumental variables. Multiple sensitivity analyses assessed result robustness. RESULTS: Fifteen gut microbial taxa showed significant causal associations with CCA risk. Higher genetically predicted abundance of genus Eubacteriumnodatum group, genus Ruminococcustorques group, genus Coprococcus, genus Dorea, and phylum Actinobacteria were associated with reduced risk of gallbladder cancer and extrahepatic CCA. Increased intrahepatic CCA risk was associated with higher abundance of family Veillonellaceae, genus Alistipes, order Enterobacteriales, and phylum Firmicutes. Protective effects against CCA were suggested for genus Collinsella, genus Eisenbergiella, genus Anaerostipes, genus Paraprevotella, genus Parasutterella, and phylum Verrucomicrobia. Sensitivity analyses indicated these findings were reliable without pleiotropy. CONCLUSION: This pioneering study provides novel evidence that specific gut microbiota may play causal roles in CCA risk. Further experimental validation of these candidate microbes is warranted to consolidate causality and mechanisms.

4.
Nutrients ; 16(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38337738

ABSTRACT

Athletes often take sport supplements to reduce fatigue and immune disturbances during or after training. This study evaluated the acute effects of concurrent ingestion of alkaline water and L-glutamine on the salivary immunity and hormone responses of boxers after training. Twelve male boxing athletes were recruited in this study. During regular training, the participants were randomly divided into three groups and asked to consume 400 mL of alkaline water (Group A), 0.15 g/kg body weight of L-glutamine with 400 mL of water (Group G), and 0.15 g/kg of L-glutamine with 400 mL of alkaline water (Group A+G) at the same time each day for three consecutive weeks. Before and immediately after the training, saliva, heart rates, and the rate of perceived exertion were investigated. The activity of α-amylase and concentrations of lactoferrin, immunoglobulin A (IgA), testosterone, and cortisol in saliva were measured. The results showed that the ratio of α-amylase activity/total protein (TP) significantly increased after training in Group A+G but not in Group A or G, whereas the ratios of lactoferrin/TP and IgA/TP were unaffected in all three groups. The concentrations of salivary testosterone after training increased significantly in Group A+G but not in Group A or G, whereas the salivary cortisol concentrations were unaltered in all groups. In conclusion, concurrent ingestion of 400 mL of alkaline water and 0.15 g/kg of L-glutamine before training enhanced the salivary α-amylase activity and testosterone concentration of boxers, which would be beneficial for post-exercise recovery.


Subject(s)
Boxing , Salivary alpha-Amylases , Humans , Male , Glutamine/metabolism , Testosterone/metabolism , Hydrocortisone/metabolism , Lactoferrin/metabolism , Immunoglobulin A/metabolism , Athletes , Eating , Saliva/metabolism
5.
J Int Soc Sports Nutr ; 21(1): 2300259, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38193521

ABSTRACT

BACKGROUND: Maintaining proper immune function and hormone status is important for athletes to avoid upper respiratory tract infection (URTI) and insufficient recovery, which is detrimental to sport performance and health. The aim of this study was to evaluate whether three-week supplementation of L-glutamine could benefit the mucosal immunity and hormonal status of combat-sport athletes as well as their rates of upper respiratory tract infection (URTI) and subjective feelings of well-being after intensive training. METHODS: Twenty-one combat-sport athletes from the National Taiwan University of Sport were recruited in this study. After intensive training, two groups of the participants were asked to consume powder form of 0.3 g/kg body weight of L-glutamine (GLU group) or maltodextrin (PLA group) with drinking water in a randomized design at the same time every day during 3 weeks. Saliva samples were collected to measure immunoglobulin A (IgA), nitric oxide (NO), testosterone (T) and cortisol (C) before and after three-week supplementation; moreover, Hooper's index questionnaires were completed for wellness assessment. The incidence and duration of URTI were recorded by using a health checklist throughout the entire study period. RESULTS: Supplementation of L-glutamine significantly enhanced the concentrations of IgA and NO in saliva; additionally, the incidence of URTI was significantly reduced. Regarding hormones, T concentration was significantly decreased in the PLA group, whereas C concentration was significantly increased, resulting in a significant decrease of T/C ratio. In contrast, the GLU group showed a significant increase of T/C ratio, while the mood scores of the Hooper's index questionnaire were higher in the PLA group. CONCLUSIONS: Three-week supplementation of L-glutamine after intensive training enhanced the mucosal immunity, improved hormonal status and reduced the rate of URTI of combat-sport athletes while feelings of well-being were also enhanced. Therefore, L-glutamine would be beneficial for the sports performance and recovery of athletes.


Subject(s)
Athletic Performance , Respiratory Tract Infections , Humans , Glutamine , Immunity, Mucosal , Athletes , Immunoglobulin A , Nitric Oxide , Respiratory Tract Infections/prevention & control , Dietary Supplements , Polyesters
6.
Physiol Rep ; 11(3): e15556, 2023 02.
Article in English | MEDLINE | ID: mdl-36750121

ABSTRACT

The COVID-19 pandemic restricted the regular training and competition program of athletes. Vaccines against COVID-19 are known to be beneficial for the disease; however, the unknown side effects of vaccines and postvaccination reactions have made some athletes hesitant to get vaccinated. We investigated the changes in inflammatory responses and menstrual cycles of female athletes before and after vaccination. Twenty female athletes were enrolled in this study. Blood was collected from each subject before the first COVID-19 vaccination and after the first and second vaccinations. Laboratory data, including white blood cell, neutrophil, lymphocyte, and platelet counts, and inflammatory markers, including NLR (neutrophil-to-lymphocyte ratio), PLR (platelet lymphocyte ratio), RPR (red cell distribution width to platelet ratio), SII (systemic immune-inflammation index), and NeuPla (neutrophil-platelet ratio), were analyzed statistically. The menstrual changes before and after vaccination and the side effects were collected by questionnaires. No significant changes in the laboratory data were found after the first and second shots when compared to those at prevaccination: white blood cell, neutrophil, lymphocyte, platelet, NLR, PLR, SII, RPR, and NeuPla (p > 0.05). In addition, there were no significant changes in the menstruation cycle or days of the menstrual period (p > 0.05). All side effects after vaccination were mild and subsided in 2 days. The blood cell counts, inflammatory markers, and menstruation of female athletes were not affected by COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Female , COVID-19 Vaccines/metabolism , Menstruation , Pandemics , COVID-19/metabolism , Blood Cell Count , Lymphocytes/metabolism , Inflammation/metabolism , Neutrophils/metabolism , Retrospective Studies
7.
Biomedicine (Taipei) ; 12(3): 56-71, 2022.
Article in English | MEDLINE | ID: mdl-36381194

ABSTRACT

COVID-19 pandemic has been a global outbreak of coronavirus (SARS-CoV-2 virus) since 2019. Taiwan Chingguan Yihau (NRICM101) is the first traditional Chinese medicine (TCM) classic herbal formula and is widely used for COVID-19 patients in Taiwan and more than 50 nations. This study is to investigate in silico target fishing for the components of NRICM101 and to explore whether NRICM101 inhibits cytokines-induced normal human lung cell injury in vitro. Our results showed that network prediction of NRICM101 by a high throughput target screening platform showed that NRICM101 has multiple functions that may affect cytokine regulation to prevent human lung cell injury. In addition, NRICM101 revealed protective effects against TNF-α/IL-1ß-induced normal human lung HEL 299 cell injury through JNK and p38MAPK kinase signaling. Next-generation sequencing (NGS) analysis of NRICM101 on TNF-α/IL-1ß-injured HEL 299 cells indicated that inflammatory pathway, cell movement of macrophages, cellular infiltration by macrophages, and Th1/Th2 immuno-regulation pathways were included. Thus, NRICM101 is a therapeutic agent, and it can improve COVID-19 syndrome to confer beneficial effects through multiple targeting and multiple mechanisms.

8.
J Pharm Pharmacol ; 74(9): 1261-1273, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35880728

ABSTRACT

OBJECTIVES: MTH-3, a curcumin derivative, exhibits improved water solubility. This study aims to elucidate the mechanisms underlying the anticancer effects of MTH-3 on human oral squamous cell carcinoma CAL27 cisplatin-resistant (CAR) cells. METHODS: To evaluate the biological functions of MTH-3 in CAR cells, flow cytometry, staining, and western blot analyses were used. KEY FINDINGS: MTH-3 reduced CAR cell viability and significantly induced autophagy in the presence of 10 and 20 µM MTH-3. Transcription factor EB was identified as the potential target of MTH-3. Autophagy-related proteins were upregulated after 24 h of MTH-3 incubation. MTH-3 treatment increased caspase-3 and caspase-9 enzyme activities. Mitochondrial membrane potential was decreased after MTH-3 treatment. MTH-3 triggered the intrinsic apoptotic pathway. CONCLUSIONS: MTH-3 induces autophagy and apoptosis of CAR cells via TFEB. MTH-3 might be an effective pharmacological agent for treating oral cancer cells.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Apoptosis , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/pharmacology , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Cisplatin/pharmacology , Humans , Mouth Neoplasms/pathology
9.
Article in English | MEDLINE | ID: mdl-35010774

ABSTRACT

There is interest in whether nicotine could enhance attention in sporting performance, but evidence on the acute effect of nicotine on physical response and sports performance in baseball players remains scant. This was an observational study to examine whether nicotine gum chewed before exercise could provide acute effects on physiological responses and sport performance. Accordingly, heart rate variability (HRV), saliva cotinine concentration and α-amylase activity, cognitive function, muscle strength, and baseball-hitting performance were measured. Thirteen healthy male non-smoker baseball players were recruited. Conducting two sequences with 7-day intervals, they chewed nicotine gum (nicotine group) or flavor-matched placebo gum (placebo group) for 30 min. HRV and saliva analyses were conducted before gum consumption (S1), after gum consumption (S2), and after test completion (S3). Cognitive, muscle strength, and baseball-hitting performance tests were performed after nicotine or placebo gum chewing. The outcomes of all assessed variables were compared within and between the groups. Significant changes in HRV, α-amylase, testosterone, and cortisol were observed in the nicotine group at S2 and S3 (p < 0.05). Compared with the placebo group, the nicotine group exhibited enhanced motor reaction times, grooved pegboard test (GPT) results on cognitive function, and baseball-hitting performance, and small effect sizes were noted (d = 0.47, 0.46 and 0.41, respectively). Nicotine could induce changes in endocrine and sympathetic nerve activity and enhance cognitive function and baseball-hitting performance. However, no increase in muscle strength was observed after nicotine intake.


Subject(s)
Athletic Performance , Baseball , Attention , Chewing Gum , Humans , Male , Nicotine
10.
Life (Basel) ; 11(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34833010

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammation and pain and even to prevent the progression of cardiovascular disease. They have become widely used because of their effectiveness, especially among athletes performing high-intensity training. Indomethacin is used for pain management in sports medicine and is highly effective and versatile. However, several clinical studies have reported that indomethacin induces acute renal damage. In the present study, we determined that indomethacin reduced human embryonic kidney 293 (HEK293) cell viability in a concentration-dependent manner by triggering apoptosis. In addition, we demonstrated the effect of quercetin on indomethacin-treated HEK293 cells by inactivating the caspase-3 and caspase-9 signals. Furthermore, quercetin reduced ROS production and increased mitochondrial membrane potential (ΔΨm) in indomethacin-treated HEK293 cells. Our results indicate that quercetin can interrupt the activated caspase and mitochondrial pathway induced by indomethacin in HEK293 cells and affect apoptotic mRNA expression. Quercetin can protect against indomethacin-induced HEK293 cell apoptosis by regulating abnormal ΔΨm and apoptotic mRNA expression.

11.
In Vivo ; 35(5): 2621-2630, 2021.
Article in English | MEDLINE | ID: mdl-34410949

ABSTRACT

BACKGROUND/AIM: Magnetic resonance imaging (MRI) is a technique for evaluating patients with primary and metastatic tumors. The contrast agents improve the diagnostic accuracy of MRI. Large quantities of a contrast agent must be administrated into the patient to obtain useful images, which leads to cell injury. Gadolinium has been reported to cause central lobular necrosis of the liver and nephrogenic systemic fibrosis. However, the toxicity caused on brain tissue is uncertain. MATERIALS AND METHODS: This study mainly aimed on the in vitro study of high concentration (2 and 5-fold of normal concentration) gadolinium-based contrast agents (GBCAs), gadodiamide (Omniscan®), on normal brain glial SVG P12 cells. MTT assay, DAPI staining, immunofluorescent staining, LysoTracker Red staining, and western blotting analysis were applied on the cells. RESULTS: The viability of gadodiamide (1.3, 2.6, 5.2, 13 and 26 mM)-treated SVG P12 cells was significantly reduced after 24 h of incubation. Gadodiamide caused significant autophagic flux at 2.6, 5.2 and 13.0 mM as seen by acridine orange (AO) staining, LC-3-GFP and LysoTracker Red staining. The expression levels of autophagy-related proteins such as beclin-1, ATG-5, ATG-14 and LC-3 II were up-regulated after 24 h of gadodiamide incubation. Autophagy inhibitors including 3-methyladenine (3-MA), chloroquine (CQ) and bafilomycin A1 (Baf) significantly alleviated the autophagic cell death effect of gadodiamide on normal brain glial SVG P12 cells. Gadodiamide induced significant apoptotic effects at 5.2 mM and 13.0 mM as seen by DAPI staining and the pan-caspase inhibitor significantly alleviated the apoptotic effect. Gadodiamide at 5.2 mM and 13.0 mM inhibited antiapoptotic protein expression levels of Bcl-2 and Bcl-XL, while promoted pro-apoptotic protein expression levels of Bax, BAD, cytochrome c, Apaf-1, cleaved-caspase-9 and cleaved-caspase-3. CONCLUSION: Normal brain glial SVG P12 cells treated with high concentrations of gadodiamide can undergo autophagy and apoptosis.


Subject(s)
Apoptosis Regulatory Proteins , Gadolinium DTPA , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Brain/metabolism , Gadolinium DTPA/toxicity , Humans
12.
Exp Ther Med ; 22(2): 822, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34131445

ABSTRACT

Dracorhodin can be isolated from the exudates of the fruit of Daemonorops draco. Previous studies suggested that dracorhodin perchlorate can promote fibroblast proliferation and enhance angiogenesis during wound healing. In the present study, the potential bioactivity of dracorhodin perchlorate in human HaCaT keratinocytes, were investigated in vitro, with specific focus on HaCaT wound healing. The results of in vitro scratch assay demonstrated the progressive closure of the wound after treatment with dracorhodin perchlorate in a time-dependent manner. An MTT assay and propidium iodide exclusion detected using flow cytometry were used to detect cell viability of HaCaT cells. Potential signaling pathways underlying the effects mediated by dracorhodin perchlorate in HaCaT cells were clarified by western blot analysis and kinase activity assays. Dracorhodin perchlorate significantly increased the protein expression levels of ß-catenin and activation of AKT, ERK and p38 in HaCaT cells. In addition, dracorhodin perchlorate did not induce HaCaT cell proliferation but promoted cell migration. Other mechanisms may yet be involved in the dracorhodin perchlorate-induced wound healing process of human keratinocytes. In summary, dracorhodin perchlorate may serve to be a potential molecularly-targeted phytochemical that can improve skin wound healing.

13.
Oncol Rep ; 46(1)2021 Jul.
Article in English | MEDLINE | ID: mdl-34013378

ABSTRACT

Triple­negative breast cancer (TNBC) behaves aggressively in the invasive and metastatic states. Our research group recently developed a novel curcumin derivative, (1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(2­methoxy-4,1­phenylene)bis(3-hydroxy2-hydroxymethyl)-2­methyl propanoate (MTH­3), and previous studies showed that MTH­3 inhibits TNBC proliferation and induces apoptosis in vitro and in vivo with a superior bioavailability and absorption than curcumin. In the present study, the effects of MTH­3 on TNBC cell invasion were examined using various assays and gelatin zymography, and western blot analysis. Treatment with MTH­3 inhibited MDA­MB­231 cell invasion and migration, as shown by Transwell assay, 3D spheroid invasion assay, and wound healing assay. The results of the gelatin zymography experiments revealed that MTH­3 decreased matrix metalloproteinase­9 activity. The potential signaling pathways were revealed by next­generation sequencing analysis, antibody microarray analysis and western blot analysis. In conclusion, the results of the present study show that, MTH­3 inhibited tumor cell invasion through the MAPK/ERK/AKT signaling pathway and cell cycle regulatory cascade, providing significant information about the potential molecular mechanisms of the effects of MTH­3 on TNBC.


Subject(s)
Antineoplastic Agents/pharmacology , Diarylheptanoids/pharmacology , Gene Expression Profiling/methods , MAP Kinase Signaling System/drug effects , Triple Negative Breast Neoplasms/genetics , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Diarylheptanoids/chemistry , Down-Regulation , Female , Gene Expression Regulation, Neoplastic/drug effects , High-Throughput Nucleotide Sequencing , Humans , Matrix Metalloproteinase 9/metabolism , Sequence Analysis, RNA , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
14.
Int J Mol Med ; 47(1): 3-22, 2021 01.
Article in English | MEDLINE | ID: mdl-33236131

ABSTRACT

The coronavirus disease 2019 (COVID­19) outbreak, which has caused >46 millions confirmed infections and >1.2 million coronavirus related deaths, is one of the most devastating worldwide crises in recent years. Infection with COVID­19 results in a fever, dry cough, general fatigue, respiratory symptoms, diarrhoea and a sore throat, similar to those of acute respiratory distress syndrome. The causative agent of COVID­19, SARS­CoV­2, is a novel coronavirus strain. To date, remdesivir has been granted emergency use authorization for use in the management of infection. Additionally, several efficient diagnostic tools are being actively developed, and novel drugs and vaccines are being evaluated for their efficacy as therapeutic agents against COVID­19, or in the prevention of infection. The present review highlights the prevalent clinical manifestations of COVID­19, characterizes the SARS­CoV­2 viral genome sequence and life cycle, highlights the optimal methods for preventing viral transmission, and discusses possible molecular pharmacological mechanisms and approaches in the development of anti­SARS­CoV­2 therapeutic agents. In addition, the use of traditional Chinese medicines for management of COVID­19 is discussed. It is expected that novel anti­viral agents, vaccines or an effective combination therapy for treatment/management of SARS­CoV­2 infection and spread therapy will be developed and implemented in 2021, and we would like to extend our best regards to the frontline health workers across the world in their fight against COVID­19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 , Medicine, Chinese Traditional , Pandemics , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/genetics , COVID-19/pathology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
15.
Molecules ; 25(14)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709024

ABSTRACT

Glucocorticoids are widely used anti-inflammatory drugs in clinical settings. However, they can induce skeletal muscle atrophy by reducing fiber cross-sectional area and myofibrillar protein content. Studies have proven that antioxidants can improve glucocorticoid-induced skeletal muscle atrophy. Quercetin is a potent antioxidant flavonoid widely distributed in fruits and vegetables and has shown protective effects against dexamethasone-induced skeletal muscle atrophy. In this study, we demonstrated that dexamethasone significantly inhibited cell growth and induced cell apoptosis by stimulating hydroxyl free radical production in C2C12 skeletal muscle cells. Our results evidenced that quercetin increased C2C12 skeletal cell viability and exerted antiapoptotic effects on dexamethasone-treated C2C12 cells by regulating mitochondrial membrane potential (ΔΨm) and reducing oxidative species. Quercetin can protect against dexamethasone-induced muscle atrophy by regulating the Bax/Bcl-2 ratio at the protein level and abnormal ΔΨm, which leads to the suppression of apoptosis.


Subject(s)
Antioxidants/pharmacology , Muscle, Skeletal/drug effects , Muscular Atrophy/drug therapy , Quercetin/pharmacology , Antioxidants/chemistry , Apoptosis/drug effects , Cell Survival/drug effects , Dexamethasone/toxicity , Flavonoids/chemistry , Flavonoids/pharmacology , Glucocorticoids/chemistry , Glucocorticoids/pharmacology , Humans , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/chemically induced , Muscular Atrophy/pathology
16.
Phytother Res ; 34(8): 2053-2066, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32185829

ABSTRACT

Gemcitabine (GEM) resistance in pancreatic adenocarcinoma mediated by the receptor for advanced glycation end products (RAGE) has been demonstrated. Therefore, investigating the safety and the potential of new auxiliary methods for pancreatic cancer treatment is urgent. Ursolic acid (UA), a natural pentacyclic triterpenoid found in apple peels, rosemary, and thyme, has been reported to have anticancer capacity. This study aimed to reveal the underlying mechanisms of UA in cell death and drug enhancement, especially in GEM-resistant pancreatic cancer cells. First, GEM-resistant cells (MIA Paca-2GEMR cells) were established by incrementally increasing GEM culture concentrations. UA treatment reduced cell viability through cell cycle arrest and endoplasmic reticulum (ER) stress, resulting in apoptosis and autophagy in a dose-dependent manner in MIA Paca-2 and MIA Paca-2GEMR cells. High RAGE expression in MIA Paca-2GEMR cells was suppressed by UA treatment. Interestingly, knocking down RAGE expression showed similar UA-induced effects in both cell lines. Remarkably, UA had a drug-enhancing effect by decreasing cell viability and increasing cell cytotoxicity when combined with GEM treatment. In conclusions, UA triggered ER stress, subsequently regulating apoptosis- and autophagy-related pathways and increasing GEM chemosensitivity in pancreatic cancer cells by inhibiting the expression of RAGE.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Pancreatic Neoplasms/drug therapy , Triterpenes/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Autophagy , Cell Line, Tumor , Cell Proliferation , Humans , Pancreatic Neoplasms/mortality , Survival Rate , Triterpenes/pharmacology , Ursolic Acid
17.
Biomed Res Int ; 2020: 8750231, 2020.
Article in English | MEDLINE | ID: mdl-33490258

ABSTRACT

OBJECTIVES: Sport-specific functional tests were used to assess the power, speed, and agility of the lower extremity for a specific sport, but comparison of the differences and association with sport injury was rare. The aim of this study was to investigate the differences in sport-specific functional tests between junior basketball and soccer athletes and analyze the sport injury risk and occurrences. METHODS: All participants were evaluated using the sprint test, vertical jump (VJ) test, agility T test, and functional movement screen (FMS). There were significant intergroup differences in the sprint test, VJ test, agility T test, and FMS. Specific functional tests were compared against FMS score, either FMS ≤ 14 or FMS > 14. The FMS subtests, namely, in-line lunge, trunk stability push-up (TSPU), and quadruped rotary stability, were also performed. In one-year follow-up, the sport injury incidence was also recorded. RESULTS: Significant differences in sprint, agility, and FMS performance were found between the junior basketball and soccer athletes. Individual FMS scores of the in-line lunge, TSPU, and quadruped rotary stability were evaluated. No significant differences in sprint, VJ, and agility scores were found between FMS ≤ 14 and FMS > 14. FMS total score ≤ 14 was significantly associated with high sport injury occurrence. CONCLUSIONS: The scores of sprint, agility, and FMS performance were differed between basketball and soccer athletes. The scores of sprint, VJ, and agility tests did not have differences with sport injury risks and occurrences, but the FMS score was associated with sport injury occurrence.


Subject(s)
Athletes/statistics & numerical data , Athletic Injuries/epidemiology , Athletic Performance , Basketball/physiology , Adolescent , Athletic Performance/physiology , Athletic Performance/statistics & numerical data , Exercise Test , Humans , Prospective Studies , Risk Factors
18.
Food Sci Nutr ; 7(11): 3797-3807, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31763029

ABSTRACT

Kalimeris indica (L.) Sch. Bip. is a traditional Chinese medicine (TCM) and a portion of food used for cooking in China. It has been demonstrated that an ethanol extract of K. indica has an anti-inflammatory effect by inhibition of nitric oxide (NO) production on murine macrophage RAW264.7 cells after lipopolysaccharide (LPS) induction. In this study, the hepatoprotective effects of the total phenolics of K. indica (TPK), the total triterpenes of K. indica (TTK), and the total flavones of K. indica (TFK) from ethanol extracts of K. indica were evaluated in Bacille Calmette-Guerin (BCG)/LPS-induced liver injury in vivo. The treatments of TPK, TTK, and TFK improved liver injury in mice. Additionally, all treatments significantly not only reduced the hepatic malondialdehyde (MDA) content and hepatic total nitric oxide synthase (tNOS) but also induced the hepatic superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. The treatments of TPK and TTK significantly reduced the hepatic inducible nitric oxide synthase (iNOS). The treatments of TPK, TTK, and TFK reduced the serum total bilirubin (T-Bil), and only TFK treatment reduced the serum alanine aminotransferase (ALT). Our results suggest that TPK, TTK, and TFK from ethanol extracts of K. indica might play an essential protective role against BCG/LPS-induced liver injury in vivo.

19.
J Food Drug Anal ; 27(4): 887-896, 2019 10.
Article in English | MEDLINE | ID: mdl-31590760

ABSTRACT

The triggering of gemcitabine (GEM) drug resistance in pancreatic cancer by the receptor for advanced glycation end products (RAGE) has been demonstrated. Hence, finding a safe and effective adjuvant for preventing pancreatic cancer progression is imperative. Quercetin is a flavonoid that is abundant in apples, grapes, red raspberry, and onions and has been reported to inhibit RAGE. This research aimed to investigate the mechanisms of quercetin in regulating cell death and enhancing drug effects through RAGE reduction, especially in GEM-resistant pancreatic cancer cells. Our results showed that silencing RAGE expression by RAGE-specific siRNA transfection significantly increased cell death by apoptosis, autophagy and GEM-induced cytotoxicity by suppressing the PI3K/AKT/mTOR axis in MIA Paca-2 and MIA Paca-2 GEMR cells (GEM-resistant cells). Notably, quercetin showed a dramatic effect similar to RAGE silencing that effectively attenuated RAGE expression to facilitate cell cycle arrest, autophagy, apoptosis, and GEM chemosensitivity in MIA Paca-2 GEMR cells, suggesting that an additional reaction occurred under combined quercetin and GEM treatment. In conclusion, the results demonstrated that the molecular mechanisms of quercetin in regulating apoptosis and autophagy-related pathways and increasing GEM chemosensitivity in pancreatic cancer cells involved inhibition of RAGE expression.


Subject(s)
Antineoplastic Agents/pharmacology , Pancreatic Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Quercetin/pharmacology , Receptor for Advanced Glycation End Products/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/chemistry , Receptor for Advanced Glycation End Products/metabolism , TOR Serine-Threonine Kinases/metabolism
20.
J Agric Food Chem ; 67(12): 3323-3332, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30832473

ABSTRACT

High mobility group box 1 (HMGB1) is upregulated in nearly every tumor type. Importantly, clinical evidence also proposed that HMGB1 is particularly increased in metastatic prostate cancer patients. Besides, a growing number of studies highlighted that HMGB1 could be a successful therapeutic target for prostate cancer patients. Glycyrrhizin is a novel pharmacological inhibitor of HMGB1 that may repress prostate cancer metastasis. This research was aimed to investigate the effect of glycyrrhizin on inhibition of HMGB1-induced epithelial-to-mesenchymal transition (EMT), a key step of tumor metastasis, in prostate cancer cells. In this study, HMGB1 knock-downed DU145 prostate cancer cells were used. Silencing the HMGB1 gene expression triggered a change of cell morphology to a more epithelial-like shape, which was accompanied by a reduction of Cdc42/GSK-3ß/Snail and induction of E-cadherin levels estimated by immunoblotting. Furthermore, HMGB1 facilitated cell migration and invasion via downstream signaling, whereas HMGB1 targeting by 10 mM ethyl pyruvate effectively inhibited EMT characteristics. Interestingly, cell migration capacity induced by HMGB1 in DU145 cells was abolished in a dose-dependent effect of 25-200 µM glycyrrhizin treatment. In conclusion, glycyrrhizin successfully inhibited HMGB1-induced EMT phenomenon, which suggested that glycyrrhizin may serves as a therapeutic agent for metastatic prostate cancer.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Glycyrrhizic Acid/pharmacology , HMGB1 Protein/metabolism , Prostatic Neoplasms/metabolism , Signal Transduction/drug effects , Animals , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , HMGB1 Protein/genetics , Humans , Male , Prostate/drug effects , Prostate/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/physiopathology , Snails/genetics , Snails/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...