Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(27)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597335

ABSTRACT

5dtransition metal oxides, such as iridates, have attracted significant interest in condensed matter physics throughout the past decade owing to their fascinating physical properties that arise from intrinsically strong spin-orbit coupling (SOC) and its interplay with other interactions of comparable energy scales. Among the rich family of iridates, iridium dioxide (IrO2), a simple binary compound long known as a promising catalyst for water splitting, has recently been demonstrated to possess novel topological states and exotic transport properties. The strong SOC and the nonsymmorphic symmetry that IrO2possesses introduce symmetry-protected Dirac nodal lines (DNLs) within its band structure as well as a large spin Hall effect in the transport. Here, we review recent advances pertaining to the study of this unique SOC oxide, with an emphasis on the understanding of the topological electronic structures, syntheses of high crystalline quality nanostructures, and experimental measurements of its fundamental transport properties. In particular, the theoretical origin of the presence of the fourfold degenerate DNLs in band structure and its implications in the angle-resolved photoemission spectroscopy measurement and in the spin Hall effect are discussed. We further introduce a variety of synthesis techniques to achieve IrO2nanostructures, such as epitaxial thin films and single crystalline nanowires, with the goal of understanding the roles that each key parameter plays in the growth process. Finally, we review the electrical, spin, and thermal transport studies. The transport properties under variable temperatures and magnetic fields reveal themselves to be uniquely sensitive and modifiable by strain, dimensionality (bulk, thin film, nanowire), quantum confinement, film texture, and disorder. The sensitivity, stemming from the competing energy scales of SOC, disorder, and other interactions, enables the creation of a variety of intriguing quantum states of matter.

2.
Phys Rev E ; 108(1-1): 014311, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37583227

ABSTRACT

The analytic inference, e.g., predictive distribution being in closed form, may be an appealing benefit for machine learning practitioners when they treat wide neural networks as Gaussian process in a Bayesian setting. The realistic widths, however, are finite and cause weak deviation from the Gaussianity under which partial marginalization of random variables in a model is straightforward. On the basis of multivariate Edgeworth expansion, we propose a non-Gaussian distribution in differential form to model a finite set of outputs from a random neural network, and derive the corresponding marginal and conditional properties. Thus, we are able to derive the non-Gaussian posterior distribution in Bayesian regression task. In addition, in the bottlenecked deep neural networks, a weight space representation of a deep Gaussian process, the non-Gaussianity is investigated through the marginal kernel and the accompanying small parameters.

3.
Entropy (Basel) ; 23(11)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34828085

ABSTRACT

It is desirable to combine the expressive power of deep learning with Gaussian Process (GP) in one expressive Bayesian learning model. Deep kernel learning showed success as a deep network used for feature extraction. Then, a GP was used as the function model. Recently, it was suggested that, albeit training with marginal likelihood, the deterministic nature of a feature extractor might lead to overfitting, and replacement with a Bayesian network seemed to cure it. Here, we propose the conditional deep Gaussian process (DGP) in which the intermediate GPs in hierarchical composition are supported by the hyperdata and the exposed GP remains zero mean. Motivated by the inducing points in sparse GP, the hyperdata also play the role of function supports, but are hyperparameters rather than random variables. It follows our previous moment matching approach to approximate the marginal prior for conditional DGP with a GP carrying an effective kernel. Thus, as in empirical Bayes, the hyperdata are learned by optimizing the approximate marginal likelihood which implicitly depends on the hyperdata via the kernel. We show the equivalence with the deep kernel learning in the limit of dense hyperdata in latent space. However, the conditional DGP and the corresponding approximate inference enjoy the benefit of being more Bayesian than deep kernel learning. Preliminary extrapolation results demonstrate expressive power from the depth of hierarchy by exploiting the exact covariance and hyperdata learning, in comparison with GP kernel composition, DGP variational inference and deep kernel learning. We also address the non-Gaussian aspect of our model as well as way of upgrading to a full Bayes inference.

4.
Entropy (Basel) ; 23(11)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34828243

ABSTRACT

Deep Gaussian Processes (DGPs) were proposed as an expressive Bayesian model capable of a mathematically grounded estimation of uncertainty. The expressivity of DPGs results from not only the compositional character but the distribution propagation within the hierarchy. Recently, it was pointed out that the hierarchical structure of DGP well suited modeling the multi-fidelity regression, in which one is provided sparse observations with high precision and plenty of low fidelity observations. We propose the conditional DGP model in which the latent GPs are directly supported by the fixed lower fidelity data. Then the moment matching method is applied to approximate the marginal prior of conditional DGP with a GP. The obtained effective kernels are implicit functions of the lower-fidelity data, manifesting the expressivity contributed by distribution propagation within the hierarchy. The hyperparameters are learned via optimizing the approximate marginal likelihood. Experiments with synthetic and high dimensional data show comparable performance against other multi-fidelity regression methods, variational inference, and multi-output GP. We conclude that, with the low fidelity data and the hierarchical DGP structure, the effective kernel encodes the inductive bias for true function allowing the compositional freedom.

5.
J Phys Chem Lett ; 8(2): 332-339, 2017 Jan 19.
Article in English | MEDLINE | ID: mdl-28026964

ABSTRACT

We predict a new class of 3D topological insulators (TIs) in which the spin-orbit coupling (SOC) can more effectively generate band gap. Band gap of conventional TI is mainly limited by two factors, the strength of SOC and, from electronic structure perspective, the band gap when SOC is absent. While the former is an atomic property, the latter can be minimized in a generic rock-salt lattice model in which a stable crossing of bands at the Fermi level along with band character inversion occurs in the absence of SOC. Thus large-gap TIs or TIs composed of lighter elements can be expected. In fact, we find by performing first-principles calculations that the model applies to a class of double perovskites A2BiXO6 (A = Ca, Sr, Ba; X = Br, I) and the band gap is predicted up to 0.55 eV. Besides, surface Dirac cones are robust against the presence of dangling bond at boundary.

6.
J Phys Condens Matter ; 28(6): 065001, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26795372

ABSTRACT

We consider Friedel oscillation in the two-dimensional Dirac materials when the Fermi level is near the van Hove singularity. Twisted graphene bilayer and the surface state of topological crystalline insulator are the representative materials which show low-energy saddle points that are feasible to probe by gating. We approximate the Fermi surface near saddle point with a hyperbola and calculate the static Lindhard response function. Employing a theorem of Lighthill, the induced charge density [Formula: see text] due to an impurity is obtained and the algebraic decay of [Formula: see text] is determined by the singularity of the static response function. Although a hyperbolic Fermi surface is rather different from a circular one, the static Lindhard response function in the present case shows a singularity similar with the response function associated with circular Fermi surface, which leads to the [Formula: see text] at large distance R. The dependences of charge density on the Fermi energy are different. Consequently, it is possible to observe in twisted graphene bilayer the evolution that [Formula: see text] near Dirac point changes to [Formula: see text] above the saddle point. Measurements using scanning tunnelling microscopy around the impurity sites could verify the prediction.

7.
Phys Rev Lett ; 108(26): 266402, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-23004998

ABSTRACT

We show that the electric charge of the Skyrmion in the vector order parameters that characterize the quantum anomalous spin Hall state and the layer antiferromagnet in a graphene bilayer is four and zero, respectively. The result is based on the demonstration that a vortex configuration in two broken symmetry states in bilayer graphene with the quadratic band crossing has the number of zero modes doubled relative to the single layer. The doubling can be understood as a result of Kramers's theorem implied by the "pseudo time reversal" symmetry of the vortex Hamiltonian. Disordering the quantum anomalous spin Hall state by Skyrmion condensation should produce a superconductor of an elementary charge 4e.

SELECTION OF CITATIONS
SEARCH DETAIL
...