Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4664, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821968

ABSTRACT

Using a transfer printing technique, we imprint a layer of a designated near-infrared fluorescent dye BTP-eC9 onto a thin layer of Pt(II) complex, both of which are capable of self-assembly. Before integration, the Pt(II) complex layer gives intense deep-red phosphorescence maximized at ~740 nm, while the BTP-eC9 layer shows fluorescence at > 900 nm. Organic light emitting diodes fabricated under the imprinted bilayer architecture harvest most of Pt(II) complex phosphorescence, which undergoes triplet-to-singlet energy transfer to the BTP-eC9 dye, resulting in high-intensity hyperfluorescence at > 900 nm. As a result, devices achieve 925 nm emission with external quantum efficiencies of 2.24% (1.94 ± 0.18%) and maximum radiance of 39.97 W sr-1 m-2. Comprehensive morphology, spectroscopy and device analyses support the mechanism of interfacial energy transfer, which also is proved successful for BTPV-eC9 dye (1022 nm), making bright and far-reaching the prospective of hyperfluorescent OLEDs in the near-infrared region.

2.
Chemistry ; : e202401063, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654592

ABSTRACT

14,14'-Bidibenzo[a,j]anthracenes (BDBAs) were prepared by iridium-catalyzed annulation of 5,5'-biterphenylene with alkynes. The molecular geometries of overcrowded BDBAs were verified by X-ray crystallography. The two dibenzo[a,j]anthryl moieties are connected through the sterically hindered 14 positions, resulting in highly distorted molecular halves. The conformation with a small twist angle between two molecular halves can minimize steric conflicts between the substituents at 1 and 13 positions and the carbon atoms of the central axis, as well as steric clashes between those substituents. One such example is octafluoro-substituted BDBA, where the interplanar angle between two anthryl moieties is approximately 31° (currently the lowest reported value, cf. 81° in 9,9'-bianthracene). The intramolecular interactions and electronic couplings between two molecular halves resulted in upfield 1H NMR signals, redshifted absorption and emission bands, and a reduced HOMO-LUMO gap. Photodynamic investigations on BDBAs indicated that the formation of the conventional symmetry-breaking charge transfer (SBCT) state was suspended by restricted rocking around the central C-C bond. Such a mechanism associated with this highly constrained conformation was examined for the first time.

3.
Angew Chem Int Ed Engl ; 63(16): e202401103, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38412017

ABSTRACT

Singlet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon-based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms. To address this discrepancy, we designed and prepared a novel molecular system based on a hexaphenylbenzene core decorated with 2 to 6 tetracene chromophores. The spatial arrangement of tetracene units, induced by steric hindrance in the central part, dictates through-space coupling, making it a relevant model for solid-state chromophore organization. We then revealed a remarkable increase in SF quantum yield with the number of tetracenes, reaching quantitative (196 %) triplet pair formation in hexamer. We observed a short-lived correlated triplet pair and limited magnetic effects, indicating ineffective triplet dissociation in these through-space coupled systems. These findings emphasize the crucial role of the number of chromophores involved and the interchromophore arrangement for the SF efficiency. The insights gained from this study will aid designing more efficient and technology-compatible SF systems for applications in photovoltaics.

4.
Nat Commun ; 15(1): 707, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267492

ABSTRACT

Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).

5.
Chemistry ; 30(11): e202303523, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37997021

ABSTRACT

A new series of biaryls, bi-linear-terphenylenes (BLTPs), were prepared using the tert-butyllithium-mediated cyclization as the key synthetic step. The three-dimensional structures of the studied compounds were verified using X-ray crystallography and DFT calculations. Tetraaryl(ethynyl)-substituted BLTPs are highly crowded molecules, and the internal rotation around the central C-C bond is restricted due to a high barrier (>50 kcal/mol). These structures contain several aryl/terphenylenyl/aryl sandwiches, where the through-space π-π (TSPP) interactions are strongly reflected in the shielding of 1 H NMR chemical shifts, reduction of oxidation potentials, increasing aromaticity of the central six-membered ring and decreasing antiaromaticity of the four-membered rings in a terphenylenyl moiety based on NICS(0) and iso-chemical shielding surfaces. Despite the restricted C-C bond associated intramolecular TSPP interactions for BLTPs in the ground state, to our surprise, the electronic coupling between two linear terphenylenes (LTPs) in BLTPs in the excited state is weak, so that the excited-state behavior is dominated by the corresponding monomeric LTPs. In other words, all BLTPs undergo ultrafast relaxation dynamics via strong exciton-vibration coupling, acting as a blue-light absorber with essentially no emission.

6.
Small ; : e2308676, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072780

ABSTRACT

Highly emissive semiconductor nanocrystals, or so-called quantum dots (QDs) possess a variety of applications from displays and biology labeling, to quantum communication and modern security. Though ensembles of QDs have already shown very high photoluminescent quantum yields (PLQYs) and have been widely utilized in current optoelectronic products, QDs that exhibit high absorption cross-section, high emission intensity, and, most important, nonblinking behavior at single-dot level have long been desired and not yet realized at room temperature. In this work, infrared-emissive MAPbI3 -based halide perovskite QDs is demonstrated. These QDs not only show a ≈100% PLQY at the ensemble level but also, surprisingly, at the single-dot level, display an extra-large absorption cross-section up to 1.80 × 10-12 cm2 and non-blinking single photon emission with a high single photon purity of 95.3%, a unique property that is extremely rare among all types of quantum emitters operated at room temperature. An in-depth analysis indicates that neither trion formation nor band-edge carrier trapping is observed in MAPbI3 QDs, resulting in the suppression of intensity blinking and lifetime blinking. Fluence-dependent transient absorption measurements reveal that the coexistence of non-blinking behavior and high single photon purity in these perovskite QDs results from a significant repulsive exciton-exciton interaction, which suppresses the formation of biexciton, and thus greatly reduces photocharging. The robustness of these QDs is confirmed by their excellent stability under continuous 1 h electron irradiation in high-resolution transmission electron microscope inspection. It is believed that these results mark an important milestone in realizing nonblinking single photon emission in semiconductor QDs.

7.
Adv Sci (Weinh) ; 10(31): e2302631, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37737620

ABSTRACT

The intractable brittleness and opacity of the crystalline semiconductor restrict the prospect of developing low-cost imaging systems. Here, infrared visualization technologies are established with large-area, semi-transparent organic upconversion devices that bring high-resolution invisible images into sight without photolithography. To exploit all photoinduced charge carriers, a monolithic device structure is proposed built on the infrared-selective, single-component charge generation layer of chloroaluminum phthalocyanine (ClAlPc) coupled to two visible light-emitting layers manipulated with unipolar charges. Transient pump-probe spectroscopy reveals that the ClAlPc-based device exhibits an efficient charge dissociation process under forward bias. This process is indicated by the prompt and strong features of electroabsorption screening. Furthermore, by imposing the electric field, the ultrafast excited state dynamic suggests a prolonged charge carrier lifetime from the ClAlPc, which facilitates the charge utilization for upconversion luminance. For the first time, >30% of the infrared photons are utilized without photomultiplication strategies owing to the trivial spectrum overlap between ClAlPc and the emitter. In addition, the device can broadcast the acoustic signal by synchronizing the device frequency with the light source, which enables to operate it in dual audio-visual mode. The work demonstrates the potential of upconversion devices for affordable infrared imaging in wearable electronics.

8.
Nat Commun ; 14(1): 5248, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37640729

ABSTRACT

The rotation of a C = C bond in an alkene can be efficiently accelerated by creating the high-strain ground state and stabilizing the transition state of the process. Herein, the synthesis, structures, and properties of several highly twisted alkenes are comprehensively explored. A facile and practical synthetic approach to target molecules is developed. The twist angles and lengths of the central C = C bonds in these molecules are 36-58° and 1.40-1.43 Å, respectively, and confirmed by X-ray crystallography and DFT calculations. A quasi-planar molecular half with the π-extended substituents delivers a shallow rotational barrier (down to 2.35 kcal/mol), indicating that the rotation of the C = C bond is as facile as that of the aryl-aryl bond in 2-flourobiphenyl. Other versatile and unique properties of the studied compounds include a broad photoabsorption range (from 250 up to 1100 nm), a reduced HOMO-LUMO gap (1.26-1.68 eV), and a small singlet-triplet energy gap (3.65-5.68 kcal/mol).

9.
Angew Chem Int Ed Engl ; 62(40): e202309831, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37594921

ABSTRACT

Self-assembled monolayers (SAMs) offer the advantage of facile interfacial modification, leading to significant improvements in device performance. In this study, we report the design and synthesis of a new series of carboxylic acid-functionalized porphyrin derivatives, namely AC-1, AC-3, and AC-5, and present, for the first time, a strategy to exploit the large π-moiety of porphyrins as a backbone for interfacing the indium tin oxide (ITO) electrode and perovskite active layer in an inverted perovskite solar cell (PSC) configuration. The electron-rich nature of porphyrins facilitates hole transfer and the formation of SAMs, resulting in a dense surface that minimizes defects. Comprehensive spectroscopic and dynamic studies demonstrate that the double-anchored AC-3 and AC-5 enhance SAMs on ITO, passivate the perovskite layer, and function as conduits to facilitate hole transfer, thus significantly boosting the performance of PSCs. The champion inverted PSC employing AC-5 SAM achieves an impressive solar efficiency of 23.19 % with a high fill factor of 84.05 %. This work presents a novel molecular engineering strategy for functionalizing SAMs to tune the energy levels, molecular dipoles, packing orientations to achieve stable and efficient solar performance. Importantly, our comprehensive investigation has unraveled the associated mechanisms, offering valuable insights for future advancements in PSCs.

11.
J Phys Chem B ; 127(31): 6896-6902, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37494414

ABSTRACT

Stimulated Raman scattering (SRS) spectromicroscopy is a powerful technique that enables label-free detection of chemical bonds with high specificity. However, the low Raman cross section due to typical far-electronic resonance excitation seriously restricts the sensitivity and undermines its application to bio-imaging. To address this bottleneck, the electronic preresonance (EPR) SRS technique has been developed to enhance the Raman signals by shifting the excitation frequency toward the molecular absorption. A fundamental weakness of the previous demonstration is the lack of dual-wavelength tunability, making EPR-SRS only applicable to a limited number of species in the proof-of-concept experiment. Here, we demonstrate the EPR-SRS spectromicroscopy using a multiple-plate continuum (MPC) light source able to examine a single vibration mode with independently adjustable pump and Stokes wavelengths. In our experiments, the C═C vibration mode of Alexa 635 is interrogated by continuously scanning the pump-to-absorption frequency detuning throughout the entire EPR region enabled by MPC. The results exhibit 150-fold SRS signal enhancement and good agreement with the Albrecht A-term preresonance model. Signal enhancement is also observed in EPR-SRS images of the whole Drosophila brain stained with Alexa 635. With the improved sensitivity and potential to implement hyperspectral measurement, we envision that MPC-EPR-SRS spectromicroscopy can bring the Raman techniques closer to a routine in bio-imaging.

12.
Angew Chem Int Ed Engl ; 62(16): e202300815, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36825300

ABSTRACT

The exploration of deactivation mechanisms for near-infrared(NIR)-emissive organic molecules has been a key issue in chemistry, materials science and molecular biology. In this study, based on transient absorption spectroscopy and transient grating photoluminescence spectroscopy, we demonstrate that the aggregated PtII complex 4H (efficient NIR emitter) exhibits collective out-of-plane motions with a frequency of 32 cm-1 (0.96 THz) in the excited states. Importantly, similar THz characteristics were also observed in analogous PtII complexes with prominent NIR emission efficiency. The conservation of THz motions enables excited-state deactivation to proceed along low-frequency vibrational coordinates, contributing to the suppression of nonradiative decay and remarkable NIR emission. These novel results highlight the significance of excited-state vibrations in nonradiative processes, which serve as a benchmark for improving device performance.

13.
Adv Sci (Weinh) ; 10(10): e2206076, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36748267

ABSTRACT

Although vacuum-deposited metal halide perovskite light-emitting diodes (PeLEDs) have great promise for use in large-area high-color-gamut displays, the efficiency of vacuum-sublimed PeLEDs currently lags that of solution-processed counterparts. In this study, highly efficient vacuum-deposited PeLEDs are prepared through a process of optimizing the stoichiometric ratio of the sublimed precursors under high vacuum and incorporating ultrathin under- and upper-layers for the perovskite emission layer (EML). In contrast to the situation in most vacuum-deposited organic light-emitting devices, the properties of these perovskite EMLs are highly influenced by the presence and nature of the upper- and presublimed materials, thereby allowing us to enhance the performance of the resulting devices. By eliminating Pb° formation and passivating defects in the perovskite EMLs, the PeLEDs achieve an outstanding external quantum efficiency (EQE) of 10.9% when applying a very smooth and flat geometry; it reaches an extraordinarily high value of 21.1% when integrating a light out-coupling structure, breaking through the 10% EQE milestone of vacuum-deposited PeLEDs.

14.
Opt Express ; 30(21): 38975-38984, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258449

ABSTRACT

Stimulated Raman scattering (SRS) has attracted increasing attention in bio-imaging because of the ability toward background-free molecular-specific acquisitions without fluorescence labeling. Nevertheless, the corresponding sensitivity and specificity remain far behind those of fluorescence techniques. Here, we demonstrate SRS spectro-microscopy driven by a multiple-plate continuum (MPC), whose octave-spanning bandwidth (600-1300 nm) and high spectral energy density (∼1 nJ/cm-1) enable spectroscopic interrogation across the entire Raman active region (0-4000 cm-1), SRS imaging of a Drosophila brain, and electronic pre-resonance (EPR) detection of a fluorescent dye. We envision that utilizing MPC light source will substantially enhance the sensitivity and specificity of SRS by implementing EPR mode and spectral multiplexing via accessing three or more coherent wavelengths.


Subject(s)
Microscopy , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Microscopy/methods , Fluorescent Dyes , Nonlinear Optical Microscopy , Vibration
15.
Opt Lett ; 47(17): 4423-4426, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048669

ABSTRACT

The vortex beam (Laguerre-Gaussian, LG10 mode) is employed to alleviate crystal damage in multiple-plate continuum generation. We successfully compressed 190-fs, 1030-nm pulses to 42 fs with 590 µJ input pulse energy, which is 5.5 times higher than that obtained by a Gaussian beam setup of the same footprint. High throughput (86%) and high intensity-weighted beam homogeneity (>98%) have also been achieved. This experiment confirms the great potential of beam shaping in energy up-scaling of nonlinear pulse compression.

16.
Nat Commun ; 13(1): 1437, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301311

ABSTRACT

Optical pump-probe spectroscopy is a powerful tool for the study of non-equilibrium electronic dynamics and finds wide applications across a range of fields, from physics and chemistry to material science and biology. However, a shortcoming of conventional pump-probe spectroscopy is that photoinduced changes in transmission, reflection and scattering can simultaneously contribute to the measured differential spectra, leading to ambiguities in assigning the origin of spectral signatures and ruling out quantitative interpretation of the spectra. Ideally, these methods would measure the underlying dielectric function (or the complex refractive index) which would then directly provide quantitative information on the transient excited state dynamics free of these ambiguities. Here we present and test a model independent route to transform differential transmission or reflection spectra, measured via conventional optical pump-probe spectroscopy, to changes in the quantitative transient dielectric function. We benchmark this method against changes in the real refractive index measured using time-resolved Frequency Domain Interferometry in prototypical inorganic and organic semiconductor films. Our methodology can be applied to existing and future pump-probe data sets, allowing for an unambiguous and quantitative characterisation of the transient photoexcited spectra of materials. This in turn will accelerate the adoption of pump-probe spectroscopy as a facile and robust materials characterisation and screening tool.


Subject(s)
Semiconductors , Spectrum Analysis/methods
17.
Sci Rep ; 11(1): 12847, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34145343

ABSTRACT

Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a [Formula: see text] noise level of [Formula: see text] RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy.

18.
Opt Lett ; 44(17): 4115-4118, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465342

ABSTRACT

We demonstrate efficient pulse compression of a 13.4 MHz, 534 fs, 123 W, Yb:YAG thin-disk oscillator down to 27 fs at 98 W average power, resulting in a record-high 166 MW peak power from an amplifier-free oscillator-driven setup. Our compressor is based on two stages: one multipass cell allowing us to reduce the pulse duration to sub-90 fs and, subsequently, a multiple-plate compressor, allowing us to reach 27 fs. The overall average power compression efficiency is 80%, and the beam has excellent beam quality and homogeneity. In addition, we demonstrate further spectral broadening that supports a transform limit of 5 fs in a second multiple-plate stage, demonstrating the potential for reaching a 100 W class, amplifier-free, few-cycle source in the near future. The performance of this unique source is very promising for applications previously restricted to amplified sources, such as efficient generation of extreme ultraviolet light at high repetition rate, and the generation of high-power broadband THz radiation.

19.
Opt Express ; 27(11): 15638-15648, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163758

ABSTRACT

Generation of octave-spanning spectrum that spans from 570 nm to 1300 nm utilizing 1030 nm 170 fs pulses from a Yb:KGW laser and a two-stage multiple-plate arrangement is demonstrated. 3.21 fs sub-single-cycle pulses are obtained after dispersion compensation. The high compression ratio of more than 50 times is achieved for two scenarios with widely different parameters including high input peak power at 1 kHz repetition rate and modest peak power at a high repetition rate of 100 kHz. The output pulses have good spatial mode quality and exhibit long-term stability. The achieved compression ratio and flexibility are unprecedented in ultrafast pulse compression to single-cycle regime. The experiments demonstrate that the technique of multiple-plate pulse compression is versatile and applicable for a wide range of laser pulse parameters.

20.
Opt Express ; 26(7): 8941-8956, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715854

ABSTRACT

The generation of high average power, carrier-envelope phase (CEP) stable, near-single-cycle pulses at a repetition rate of 100 kHz is demonstrated using an all solid-state setup. By exploiting self-phase modulation in thin quartz plates and air, the spectrum of intense pulses from a high-power, high repetition rate non-collinear optical parametric chirped pulse amplifier (NOPCPA) is extended to beyond one octave, and pulse compression down to 3.7 fs is achieved. The octave-spanning spectrum furthermore allows performing straightforward f-to-2f interferometry by frequency-doubling the long-wavelength part of the spectrum. Excellent CEP-stability is demonstrated for extended periods of time. A full spatio-spectral characterization of the compressed pulses shows only minor asymmetries between the two perpendicular beam axes. We believe that the completed system represents the first laser system satisfying all requirements for performing high repetition rate attosecond pump-probe experiments with fully correlated detection of all ions and electrons produced in the experiment.

SELECTION OF CITATIONS
SEARCH DETAIL
...