Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Probes ; 27(1): 38-45, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22960667

ABSTRACT

RNA A-to-I editing is the most common single-base editing in the animal kingdom. Dysregulations of RNA A-to-I editing are associated with developmental defects in mouse and human diseases. Mouse knockout models deficient in ADAR activities show lethal phenotypes associated with defects in nervous system, failure of hematopoiesis and reduced tolerance to stress. While several methods of identifying RNA A-to-I editing sites are currently available, most of the critical editing targets responsible for the important biological functions of ADARs remain unknown. Here we report a method to systematically analyze RNA A-to-I editing targets by combining I-specific cleavage and exon array analysis. Our results show that I-specific cleavage on editing sites causes more than twofold signal reductions in edited exons of known targets such as Gria2, Htr2c, Gabra3 and Cyfip2 in mice. This method provides an experimental approach for genome-wide analysis of RNA A-to-I editing targets with exon-level resolution. We believe this method will help expedite inquiry into the roles of RNA A-to-I editing in various biological processes and diseases.


Subject(s)
Nerve Tissue Proteins/genetics , RNA Cleavage , RNA Editing , Receptors, AMPA/genetics , Receptors, GABA-A/genetics , Adaptor Proteins, Signal Transducing , Animals , Brain/cytology , Cell Line , Exons , Genome , HEK293 Cells , Humans , Male , Mice , Mice, Inbred ICR
2.
Clin Cancer Res ; 14(19): 6023-32, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18829481

ABSTRACT

PURPOSE: Diffuse-type tenosynovial giant cell tumor (D-TSGCT) is an aggressive proliferation of synovial-like mononuclear cells with inflammatory infiltrates. Despite the COL6A3-CSF1 gene fusion discovered in benign lesions, molecular aberrations of malignant D-TSGCTs remain unidentified. EXPERIMENTAL DESIGN: We used fluorescent in situ hybridization and in situ hybridization to evaluate CSF1 translocation and mRNA expression in six malignant D-TSGCTs, which were further immunohistochemically compared with 24 benign cases for cell cycle regulators involving G(1) phase and G(1)-S transition. Comparative genomic hybridization, real-time reverse transcription-PCR, and a combination of laser microdissection and sequencing were adopted to assess chromosomal imbalances, cyclin A expression, and TP53 gene, respectively. RESULTS: Five of six malignant D-TSGCTs displayed CSF1 mRNA expression by in situ hybridization, despite only one having CSF1 translocation. Cyclin A (P = 0.008) and P53 (P < 0.001) could distinguish malignant from benign lesions without overlaps in labeling indices. Cyclin A transcripts were more abundant in malignant D-TSGCTs (P < 0.001). All malignant cases revealed a wild-type TP53 gene, which was validated by an antibody specifically against wild-type P53 protein. Chromosomal imbalances were only detected in malignant D-TSGCTs, with DNA losses predominating over gains. Notably, -15q was recurrently identified in five malignant D-TSGCTs, four of which showed a minimal overlapping deletion at 15q22-24. CONCLUSIONS: Deregulated CFS1 overexpression is frequent in malignant D-TSGCTs. The sarcomatous transformation involves aberrations of cyclin A, P53, and chromosome arm 15q. Cyclin A mRNA is up-regulated in malignant D-TSGCTs. Non-random losses at 15q22-24 suggest candidate tumor suppressor gene(s) in this region. However, P53 overexpression is likely caused by alternative mechanisms rather than mutations in hotspot exons.


Subject(s)
Cell Transformation, Neoplastic , Chromosomes, Human, Pair 15/ultrastructure , Cyclin A/physiology , Gene Deletion , Gene Expression Regulation, Neoplastic , Giant Cell Tumors/genetics , Giant Cell Tumors/metabolism , Immunohistochemistry/methods , Sarcoma/genetics , Sarcoma/metabolism , Tumor Suppressor Protein p53/physiology , Adult , Aged , Female , Humans , Macrophage Colony-Stimulating Factor/genetics , Male , Middle Aged , Nucleic Acid Hybridization
SELECTION OF CITATIONS
SEARCH DETAIL
...