Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37738191

ABSTRACT

Deep-learning-based localization and mapping approaches have recently emerged as a new research direction and receive significant attention from both industry and academia. Instead of creating hand-designed algorithms based on physical models or geometric theories, deep learning solutions provide an alternative to solve the problem in a data-driven way. Benefiting from the ever-increasing volumes of data and computational power on devices, these learning methods are fast evolving into a new area that shows potential to track self-motion and estimate environmental models accurately and robustly for mobile agents. In this work, we provide a comprehensive survey and propose a taxonomy for the localization and mapping methods using deep learning. This survey aims to discuss two basic questions: whether deep learning is promising for localization and mapping, and how deep learning should be applied to solve this problem. To this end, a series of localization and mapping topics are investigated, from the learning-based visual odometry and global relocalization to mapping, and simultaneous localization and mapping (SLAM). It is our hope that this survey organically weaves together the recent works in this vein from robotics, computer vision, and machine learning communities and serves as a guideline for future researchers to apply deep learning to tackle the problem of visual localization and mapping.

2.
Patterns (N Y) ; 4(3): 100703, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36960448

ABSTRACT

Over the recent years, WiFi sensing has been rapidly developed for privacy-preserving, ubiquitous human-sensing applications, enabled by signal processing and deep-learning methods. However, a comprehensive public benchmark for deep learning in WiFi sensing, similar to that available for visual recognition, does not yet exist. In this article, we review recent progress in topics ranging from WiFi hardware platforms to sensing algorithms and propose a new library with a comprehensive benchmark, SenseFi. On this basis, we evaluate various deep-learning models in terms of distinct sensing tasks, WiFi platforms, recognition accuracy, model size, computational complexity, and feature transferability. Extensive experiments are performed whose results provide valuable insights into model design, learning strategy, and training techniques for real-world applications. In summary, SenseFi is a comprehensive benchmark with an open-source library for deep learning in WiFi sensing research that offers researchers a convenient tool to validate learning-based WiFi-sensing methods on multiple datasets and platforms.

3.
Article in English | MEDLINE | ID: mdl-35657847

ABSTRACT

Autonomous vehicles and mobile robotic systems are typically equipped with multiple sensors to provide redundancy. By integrating the observations from different sensors, these mobile agents are able to perceive the environment and estimate system states, e.g., locations and orientations. Although deep learning (DL) approaches for multimodal odometry estimation and localization have gained traction, they rarely focus on the issue of robust sensor fusion--a necessary consideration to deal with noisy or incomplete sensor observations in the real world. Moreover, current deep odometry models suffer from a lack of interpretability. To this extent, we propose SelectFusion, an end-to-end selective sensor fusion module that can be applied to useful pairs of sensor modalities, such as monocular images and inertial measurements, depth images, and light detection and ranging (LIDAR) point clouds. Our model is a uniform framework that is not restricted to specific modality or task. During prediction, the network is able to assess the reliability of the latent features from different sensor modalities and to estimate trajectory at both scale and global pose. In particular, we propose two fusion modules--a deterministic soft fusion and a stochastic hard fusion--and offer a comprehensive study of the new strategies compared with trivial direct fusion. We extensively evaluate all fusion strategies both on public datasets and on progressively degraded datasets that present synthetic occlusions, noisy and missing data, and time misalignment between sensors, and we investigate the effectiveness of the different fusion strategies in attending the most reliable features, which in itself provides insights into the operation of the various models.

4.
IEEE Trans Neural Netw Learn Syst ; 32(12): 5479-5491, 2021 12.
Article in English | MEDLINE | ID: mdl-34559667

ABSTRACT

Dynamical models estimate and predict the temporal evolution of physical systems. State-space models (SSMs) in particular represent the system dynamics with many desirable properties, such as being able to model uncertainty in both the model and measurements, and optimal (in the Bayesian sense) recursive formulations, e.g., the Kalman filter. However, they require significant domain knowledge to derive the parametric form and considerable hand tuning to correctly set all the parameters. Data-driven techniques, e.g., recurrent neural networks, have emerged as compelling alternatives to SSMs with wide success across a number of challenging tasks, in part due to their impressive capability to extract relevant features from rich inputs. They, however, lack interpretability and robustness to unseen conditions. Thus, data-driven models are hard to be applied in safety-critical applications, such as self-driving vehicles. In this work, we present DynaNet, a hybrid deep learning and time-varying SSM, which can be trained end-to-end. Our neural Kalman dynamical model allows us to exploit the relative merits of both SSM and deep neural networks. We demonstrate its effectiveness in the estimation and prediction on a number of physically challenging tasks, including visual odometry, sensor fusion for visual-inertial navigation, and motion prediction. In addition, we show how DynaNet can indicate failures through investigation of properties, such as the rate of innovation (Kalman gain).

SELECTION OF CITATIONS
SEARCH DETAIL
...